

மனோன்மணியம் சுந்தரனார் பல்கலைக்கழகம் MANONMANIAM SUNDARANAR UNIVERSITY

TIRUNELVELI - 627012
தொலைநிலை தொடர்கல்வி இயக்ககம்

DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

M.Sc. MATHEMATICS
I YEAR
REAL ANALYSIS-I

M.SC. MATHEMATICS - I YEAR

SMAM12: REAL ANALYSIS-I

SYLLABUS

Unit I

Functions of bounded variation: Introduction - Properties of monotonic functions -Functions of bounded variation - Total variation - Additive property of total variation - Total variation on $[a, x]$ as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation.

Chapter 6: Sections 6.1 to 6.8

Infinite Series: Absolute and conditional convergence - Dirichlet's test and Abel's test Rearrangement of series - Riemann's Theorem on conditionally convergent series.

Chapter 8: Sections 8.8, 8.15, 8.17, 8.18

Unit II

The Riemann - Stieltjes Integral: Introduction - Notation - The definition of the Riemann Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann Stieltjes integral - Reduction to a Riemann Integral - Euler's summation formula Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems.

Chapter - 7: Sections 7.1 to 7.6, 7.11-7.14

Unit III

The Riemann-Stieltjes Integral - Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes Integrals-Necessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval -Second fundamental Theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral- Riemann-Stieltjes integrals depending on a parameter.

Chapter-7: Sections 7.15-7.23

Unit IV

Infinite Series and infinite Products - Double sequences - Double series -Rearrangement Theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products.

Chapter 8: Sections 8.20, 8.21 to 8.26

Power series - Multiplication of power series - The Taylor's series generated by a function Bernstein's Theorem

Chapter 9: Sections 9.14, 9.15, 9.19, 9.20

Unit V

Sequences of Functions - Pointwise convergence of sequences of functions -Examples of sequences of real - valued functions - Uniform convergence and continuity -Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann Stieltjes integration - Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series Mean convergence.

Chapter -9: Sections 9.1 to 9.6, 9.9, 9.10, 9.11.

Text Book

Tom M. Apostol: Mathematical Analysis, 2nd Edition, Addison-Wesley Publishing Company Inc. New York, 1974.
M.Sc. MATHEMATICS -I YEAR

SMAM12: REAL ANALYSIS-I

SYLLABUS

Unit I

Introduction 6
Properties of Monotonic Functions 6
Functions of Bounded Variation 9
Total Variation 13
Additive property of Total variation 18
Total Variation on $[\mathrm{a}, \mathrm{x}]$ as a function of " x ". 20
Functions of Bounded Variation Expressed as the 22
Difference of Increasing Functions
Continuous Functions of Bounded Variation 23
Absolute and Conditional Convergence 26
Dirichlet's Test and Abel's Test 29
Rearrangements of Series 32
Riemann's Theorem on Conditionally Convergent Series: 35
Unit II
Introduction 39
The Definition of the Riemann-Stieltjes Integral 40
Linear Properties 41
Integration by parts 47
Change of Variable in a Riemann-Stieltjes Integral 49
Reduction to a Riemann Integral 51
Euler's Summation Formula 61
Monotonically Increasing Integrators 63
Upper and Lower integrals

Additive and Linearity Properties of Upper and Lower Integrals
 69

Riemann's Condition 71
Comparison Theorems 76

Unit III

Integrators of Bounded Variations 81
Sufficient conditions for Existence of Riemann - Stieltjes integrals 89
Necessary conditions for Existence of Riemann - stieltjes integrals 92
Mean - value Theorems for Riemann - stieltjes Integrals 94
The integral as a function of the interval 96
Second Fundamental Theorem of Integral Calculus 100
Change of Variance 102
Second Mean- Value Theorem for Riemann Integrals 104
Riemann - satisfies integrals Depending on a Parameters 105
Unit IV
Double Sequences 108
Double Series 109
Rearrangement Theorem for Double series 110
A sufficient condition for equality of Iterated Series 116
Multiplication of Series 118
Cesaro Summability 121
Infinite Products 125
Power Series 133
Multiplication of Power Series 140
The Taylor's series generated by a function 141
Berstein's Theorem 143

Unit V

Point wise Convergence of Sequences of Functions 148
Examples of Sequences of Real-Valued Functions 148
Uniform Convergence and Continuity 152
The Cauchy Condition for Uniform Convergence 153
Uniform Convergence of Infinite Series of Functions 156
Non-Uniformly Convergent and Term by term Integration 159
Uniform Convergence and Differentiation 163
Sufficient conditions for Uniform Convergence of a Series 168
Mean Convergence 171

Unit I

Functions of bounded variation: Introduction - Properties of monotonic functions -Functions of bounded variation - Total variation - Additive property of total variation - Total variation on [a, x$]$ as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation.

Infinite Series: Absolute and conditional convergence - Dirichlet's test and Abel's test Rearrangement of series - Riemann's Theorem on conditionally convergent series.

Functions of Bounded Variation

1.1. Introduction:

Let f be a real-valued function defined on a subset S of R . Then f is said to be increasing (or non-decreasing) on S if for every pair of points x and y in S,

$$
x<y \Rightarrow f(x) \leq f(y)
$$

If $x<y \Rightarrow f(x)<f(y)$, then f is said to be strictly increasing on S . (Decreasing functions are similarly defined.) A function is called monotonic on S if it is increasing on S or decreasing on S .

If f is an increasing function, then $-f$ is a decreasing function. Because of this simple fact, in many situations involving monotonic functions it suffices to consider only the case of increasing functions.

Properties of Monotonic Functions

Theorem 1.2:

Let f be an increasing function defined on $[a, b]$ and let x_{0}, x_{1} \qquad x_{n} be
$\mathrm{n}+1$ points such that $\mathrm{a}=\mathrm{x}_{0}<\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots \ldots<\mathrm{x}_{\mathrm{n}}=\mathrm{b}$ Then we have the inequality.
$\sum_{k=1}^{n-1}\left[\left[f\left(\mathrm{x}_{\mathrm{k}}+\right)-f\left(\mathrm{x}_{\mathrm{k}}-\right)\right] \leq f(\mathrm{~b})-f(a)\right.$.

Proof:

Let ' f ' be an increasing function defined on $[\mathrm{a}, \mathrm{b}]$

Let $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots \mathrm{x}_{\mathrm{n}}$ be $\mathrm{n}+1$ points

$$
\mathrm{a}=\mathrm{x}_{0}<\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots . \mathrm{x}_{\mathrm{n}}=\mathrm{b}
$$

To prove that: $\sum_{k=1}^{n-1}\left[\left[f\left(\mathrm{x}_{\mathrm{k}}+\right)-f\left(\mathrm{x}_{\mathrm{k}}-\right)\right] \leq f(\mathrm{~b})-f(a)\right.$
Let $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots \mathrm{y}_{\mathrm{n}} \in[\mathrm{a}, \mathrm{b}]$ be points
such that $\mathrm{a}=\mathrm{x}_{0}<\mathrm{y}_{1}<\mathrm{x}_{1}<\mathrm{y}_{2}<\ldots<\mathrm{y}_{\mathrm{k}}<\mathrm{x}_{\mathrm{k}}<\mathrm{y}_{\mathrm{k}+1}<\ldots . .<\mathrm{y}_{\mathrm{n}}<\mathrm{x}_{\mathrm{n}}=\mathrm{b}$
(i.e.) for each $K \in\{1,2, \ldots . . n-1\}$,
we have, $\mathrm{y}_{\mathrm{k}}<\mathrm{x}_{\mathrm{k}}<\mathrm{y}_{\mathrm{k}+1}$
Let $f\left(\mathrm{x}_{\mathrm{k}^{-}}\right)=\lim _{x \rightarrow x_{k^{-}}} f(x) \& f\left(\mathrm{x}_{\mathrm{k}}{ }^{+}\right)=\lim _{x \rightarrow x_{k}+} f(x)$
Since f is an increasing function,
$f\left(\mathrm{y}_{\mathrm{k}}\right) \leq f\left(\mathrm{x}_{\mathrm{k}}-\right) \leq f\left(\mathrm{x}_{\mathrm{k}}\right) \leq f\left(\mathrm{x}_{\mathrm{k}}+\right) \leq f\left(\mathrm{y}_{\mathrm{k}+1}\right)$
$\therefore f\left(\mathrm{y}_{\mathrm{k}+1}\right)-f\left(\mathrm{y}_{\mathrm{k}}\right) \geq f\left(\mathrm{x}_{\mathrm{k}}+\right)-f\left(\mathrm{x}_{\mathrm{k}}-\right)$
(i.e.) $f\left(\mathrm{x}_{\mathrm{k}}+\right)=f\left(\mathrm{x}_{\mathrm{k}}-\right) \leq f\left(\mathrm{y}_{\mathrm{k}+1}\right)-f\left(\mathrm{y}_{\mathrm{k}}\right)$
$\sum_{k=1}^{n-1}\left[f\left(\mathrm{x}_{\mathrm{k}}+\right)-f\left(\mathrm{x}_{\mathrm{k}}-\right)\right] \leq \sum_{k=1}^{n-1}\left[f\left(\mathrm{y}_{\mathrm{k}+1}\right)-f\left(\mathrm{y}_{\mathrm{k}}\right)\right]$
$=\left[f\left(\mathrm{y}_{2}\right)-f\left(\mathrm{y}_{1}\right)\right]+\left[f\left(\mathrm{y}_{3}\right)-f\left(\mathrm{y}_{2}\right)\right]+\ldots+\left[f\left(\mathrm{y}_{\mathrm{n}}\right)-f\left(\mathrm{y}_{\mathrm{n}-1}\right)\right]$
$=\left[f\left(\mathrm{y}_{\mathrm{n}}\right)-f\left(\mathrm{y}_{\mathrm{n}-1}\right)\right]$
$\therefore \sum_{k=1}^{n-1}\left[\left[f\left(\mathrm{x}_{\mathrm{k}}+\right)-f\left(\mathrm{x}_{\mathrm{k}}-\right)\right] \leq f\left(\mathrm{y}_{\mathrm{n}}\right)-f\left(\mathrm{y}_{1}\right) \leq f(\mathrm{~b})-f(\mathrm{a})\right.$
[$\because f$ is increasing. $\mathrm{a}<\mathrm{y} \Rightarrow f(\mathrm{a})<f\left(\mathrm{y}_{1}\right) ; \mathrm{y}_{\mathrm{n}}<\mathrm{b} \Rightarrow f\left(\mathrm{y}_{\mathrm{n}}\right)<f(\mathrm{~b})$
Hence $\sum_{k=1}^{n-1}\left[f\left(\mathrm{x}_{\mathrm{k}}+\right)-f\left(\mathrm{x}_{\mathrm{k}}-\right)\right] \leq f(\mathrm{~b})-f(\mathrm{a})$

Theorem 1.3:

If f is monotonic $[\mathrm{a}, \mathrm{b}$], then the set of discontinuities of f is countable.

Proof:

[There are two cases to consider - both of which are analogous so we will only consider the case when f is monotonically increasing]

Let $f b e$ an increasing function on $[\mathrm{a}, \mathrm{b}]$
We note that a discontinuity occurs at $x=[a, b]$
when $f(x-) \neq f(x+)$
In particular, since ' f ' is an increasing function,

0 discontinuity occurs when $f(x+)-f(x-)>0$
There exists a natural number $\mathrm{m}>\mathrm{o}$ such that $0<1 / m<f(x+)-f(x-)$
Let $S_{m}=\left\{x \in(a, b): f(x+)-f[x-)>1 / m+m \in N^{+}\right\}$
Let $x_{1, x_{2}, \ldots, x_{n-1} \in \mathrm{~S}_{\mathrm{m}} \text { such that } x_{1}<x_{2}<\ldots<x_{n-1}, ~}^{\text {and }}$

Then $x_{1}, x_{2}, \ldots, x_{n-1}$ are discontinuities of f such that their jump
$f\left(x_{k}+\right)-f\left(x_{k}-\right)>1 / m$
$\Rightarrow \sum_{k=1}^{n-1} 1 / m \leq \sum_{k=1}^{n-1} f\left(x_{k}+\right)=f\left(x_{k}-\right)$
$\Rightarrow \frac{n-1}{m} \leq f(b)-f(a) \quad$ (by theorem. 1.2)
$\Rightarrow n-1 \leq m[f(b)-f(a)]$
$\Rightarrow n \leq m[f(b)-f(a)]+1$
\therefore The number of discontinuities ' n ' in S_{m} is bounded above.
$\therefore S_{m}$ must be a finite set of discontinuities.
(i.e.), S_{m} is a countable set of discontinuities.
\therefore For all discontinuities $x \in(a, b)$, there exist $m \in N^{+}$such that $f(x+)-f(x-)>y_{m}$, the set of all discontinuities of f on (a, b) is $\bigcup_{m=1}^{\infty} S_{m}$

Each S_{m} is a countable set
$\therefore \bigcup_{m=1}^{\infty} S_{m}$ is countable
Hence f has at most a countably infinite number of discontinuities.

Functions of Bounded Variation

Definition 1.4:

If $[a, b]$ is a compact interval, a set of points $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$, satisfying the inequalities a $=x_{0}<x_{l}<\ldots . .<x_{n-1}<x_{n}=b$, is called a partition of [a, b]. The interval $\left[x_{k-1}, x_{k}\right]$ is called the $k^{t h}$ sub interval of P and we write $\Delta x_{k}=x_{k}-x_{k-1}$
$\sum_{k=1}^{n} \Delta x_{k}=\sum_{k=1}^{n} x_{k}-x_{k-1}=\left(x_{1}-x_{0}\right)\left(x_{2}-x_{1}\right)+\ldots \ldots \ldots \ldots . .+\left(x_{n}-x_{n-1}\right)=x_{n}-x_{0}=b-a$
$\sum_{k=1}^{n} \Delta x_{k}=b-a$. The collection of all partitions of [a, b] will be denoted by $p[a, b]$

Definition 1.5:

Let f be defined on $[a, b]$. If $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a partition of $[\mathrm{a}, \mathrm{b}]$,
write $\Delta f_{k}=f\left(x_{k}\right)-f\left(x_{k-1}\right)$, for $k=1,2, \ldots \ldots, n$
If there exist a positive number $\mathrm{M} \in \sum_{k=1}^{n}\left|\Delta f_{k}\right| \leq \mathrm{M}$
for all partitions of $[a, b]$, then f is said to be of bounded variation on $[a, b]$.

Theorem 1.6:

If f is monotonic on $[\mathrm{a}, \mathrm{b}]$, then f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$.

Proof:

Let f be an increasing function on $[a, b]$
Let $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$ be a partition of $[a, b]$
Then $\Delta f_{k}=f\left(x_{k}\right)-f\left(x_{k-1}\right)$, for all $k=1,2 \ldots, n$
Now

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta f_{k}\right| \leq & =\sum_{k=1}^{n} f_{k} \quad(\because f \text { is increasing }) \\
& =\sum_{k=1}^{n}\left[f\left(x_{k}\right)-f\left(x_{k-1}\right)\right] \\
& =\left[f\left(x_{1}\right)-f\left(x_{0}\right)\right]+\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]+\cdots+\left[f\left(x_{n}\right)-f\left(x_{n-1}\right)\right] \\
& =f\left(x_{n}\right)-f\left(x_{0}\right)<f(b)-f(a)
\end{aligned}
$$

Let $M=f(b)-f(a)>0$
$\sum_{k=1}^{n}\left|\Delta f_{k}\right| \leq M, M>0$
Hence f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$

Theorem 1.7:

If f is continuous on $[\mathrm{a}, \mathrm{b}]$ and if f^{\prime} exists and is bounded in the interior, say
$\left|f^{\prime}(\mathrm{x})\right| \leq \mathrm{A}$ for all x in (a, b), then f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$.

Proof:

Let f be continuous on [a, b] and f^{\prime} exists and bounded in (a, b)
(i.e.) $\left|f^{\prime}(x)\right| \leq A$ for all $x \in(a, b)$.

Let $p=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$ be a partition of $[a, b]$
Then $\Delta x_{k}=x_{k}-x_{k-1} \& \Delta f_{k}=f\left(x_{k}\right)^{-} f\left(x_{k-1}\right)$ Since ' f ' is continuous on $[\mathrm{a}, \mathrm{b}] \& f^{\prime}$ exists in (a, b) \& by mean value theorem,
$f\left(x_{k}\right)^{-} f\left(x_{k-1}\right)=f^{\prime}\left(t_{k}\right)\left(x_{k}-x_{k-1}\right)$ for all $t_{k} \in\left(x_{k-1}, x_{k}\right)$
T0 prove: f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$
Now, $\sum_{k=1}^{n}\left|\Delta f_{k}\right| \quad=\sum_{k=1}^{n}\left[f\left(x_{k}\right)-f\left(x_{k-1}\right) \mid\right.$

$$
\begin{aligned}
& =\sum_{k=1}^{n}\left|\Delta f^{\prime}{ }_{k}\right| \cdot\left|x_{k}-x_{k-1}\right| \\
& =A \cdot \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =A \cdot\left\{\left(x_{1}-x_{0}\right]+\left[x_{2}-x_{1}\right]+\ldots \ldots+\left[x_{n}-x_{n-1}\right]\right\} \\
& =A \cdot\left(x_{n}-x_{0}\right) \\
& =A .(b-a)
\end{aligned}
$$

$$
\sum_{k=1}^{n}\left|\Delta f_{k}\right| \leq A .(b-a)
$$

Let $M=A(b-a)>o$
$\therefore \sum_{k=1}^{n}\left|\Delta f_{k}\right| \leq M, M>0$ Hence f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$

Theorem 1.8:

If f is of bounded variation on [a, b], say $\sum_{k=1}^{n}\left|\Delta f_{k}\right| \leq M$ for all partitions of [a, b], then f is bounded on $[\mathrm{a}, \mathrm{b}]$ In fact, $|f(x) \leq|f(a)|+M$ for all x in $[\mathrm{a}, \mathrm{b}]$

Proof:

Let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$
(ie.) $\sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right| \leq \mathrm{M}$ for all partitions of $[\mathrm{a}, \mathrm{b}]$
$\Rightarrow \sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq M$
Consider the partition $\mathrm{P}=\{\mathrm{a}, \mathrm{x}, \mathrm{b}\}$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
By (1), we get,
$|[f(x)-f(a)]|+|[f(b)-f(x)]| \leq M$
$\Rightarrow|f(x)-f(a)| \leq M$

$$
(:|f(x)-f(a)| \leq|f(x)+(a)|+|f(b)-f(x)|)
$$

$\Rightarrow||f(x)|-| f(a) \| \leq M$
$(\because|x-y| \geq||x|-|y||)$
$\Rightarrow|f(x)|-|f(a)| \leq M$
$(\because x \leq|x|)$
$\Rightarrow|f(x)| \leq|f(a)|+M$ for all $x \in[a, b]$

Examples 1.9:

1.Construct a continuous function which is not of bounded variation

Consider the function $f(x)=\left\{\begin{array}{c}x \cos (\pi / 2 x) \text { if } x \neq 0 \\ 0 \quad \text { if } x=0\end{array}\right.$
Here f is continuous on $[0,1]$
Consider the partition into 2 n sub intervals
$P=\left\{0, \frac{1}{2 n}, \frac{1}{2 n}-1 \ldots \ldots, 1 / 3,1 / 2,1\right\}$
We know that
$|\cos (\pi / 2 x)|=\left\{\begin{array}{c}0 \text { if } x=\frac{1}{2 k-1} \\ 1 \text { if } x=\frac{1}{2 k}\end{array} \quad\right.$ for all $k=1,2, \ldots \ldots n$

Now,
$\left|\Delta f_{1}\right|=\left|f\left(\frac{1}{2 n}\right)-f(0)\right|=|f(1 / 2 n)-0|=1 / 2 n$
$\left|\Delta \mathrm{f}_{2}\right|=\left|\mathrm{f}\left(\frac{1}{2 n}-1\right)-\mathrm{f}\left(\frac{1}{2 n}\right)\right|=\left|0-\frac{1}{2 n}\right|=1 / 2 \mathrm{n}$
$\left|\Delta \mathrm{f}_{3}\right|=\left|\mathrm{f}\left(\frac{1}{2 n}-2\right)-\mathrm{f}\left(\frac{1}{2 n}-1\right)\right|=\left|\mathrm{f}\left(\frac{1}{2 n}-2\right)-0\right|=1 / 2 \mathrm{n}-2$
$\left|\Delta \mathrm{f}_{4}\right|=\left|\mathrm{f}\left(\frac{1}{2 n}-3\right)-\mathrm{f}\left(\frac{1}{2 n}-2\right)\right|=\left|0-\mathrm{f}\left(\frac{1}{2 n}-2\right)\right|=1 / 2 \mathrm{n}-2$
$\left|\Delta \mathrm{f}_{2 \mathrm{n}-1}\right|=\left|\mathrm{f}\left(\frac{1}{2}\right)-\mathrm{f}\left(\frac{1}{3}\right)\right|=|\mathrm{f}(1 / 2)-0|=\frac{1}{2}$
$\left|\Delta \mathrm{f}_{2 \mathrm{n}}\right|=\left|\mathrm{f}(1)-\mathrm{f}\left(\frac{1}{2}\right)\right|=\left|0-\mathrm{f}\left(\frac{1}{2}\right)\right|=\frac{1}{2}$
$\therefore \sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|=\frac{1}{2 n}+\frac{1}{2 n}+\frac{1}{2 n-2}+\frac{1}{2 n-2}+\ldots \ldots \ldots .+\frac{1}{2}+\frac{1}{2}$

$$
=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots .+\frac{1}{n-1}+\frac{1}{n}
$$

(i.e.) $\sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots .+\frac{1}{n-1}+\frac{1}{n}$

This is not bounded for all ' n ' [$\sum_{n=1}^{\infty} \frac{1}{n}$ diverges]
In this example, f^{\prime} exists in $(0,1)$ but f^{\prime} is not bounded on $(0,1)$
Hence f^{\prime} is not of bounded variation on $[0,1]$

However, f^{\prime} bounded on any compact interval not containing the origin and hence f will be of bounded variation on such an interval
2. Construct a continuous function which is of bounded variation.

Consider the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x^{2} \cos (1 / x) \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right.$
Here f is continuous on $[0,1]$
Also, $f^{\prime}(0)=0$

For $\mathrm{x} \neq 0, f^{\prime}(\mathrm{x})=\mathrm{x}^{2}+\left(-\sin \left(\frac{1}{x}\right) \cdot-1 / \mathrm{x}^{2}+\cos \left(\frac{1}{x}\right) \cdot 2 \mathrm{x}\right.$

$$
\begin{aligned}
f^{\prime}(\mathrm{x}) & =\sin \frac{1}{x}+2 \mathrm{x} \cos \frac{1}{x} \\
\left|f^{\prime}(\mathrm{x})\right| & =\left|\sin \frac{1}{x}+2 \cos \frac{1}{x}\right| \\
& \leq\left|\sin \frac{1}{x}\right|+2|x| \cdot\left|\cos \frac{1}{x}\right| \\
& \leq 1+2 \cdot 1 \cdot 1=3 \\
\left|f^{\prime}(\mathrm{x})\right| & \leq 3
\end{aligned}
$$

f^{\prime} exists and is bounded in $[0,1]$
Hence f is of bounded variation on $[0,1]$
3. Boundedness of f is not necessary for f to be of bounded variation

Consider a function $f(x)=x^{1 / 3}$
Let $\mathrm{x}<\mathrm{y}$
Now, $\mathrm{x}<\mathrm{y}$
$x^{1 / 3}<y^{1 / 3}$
$f(x) \leq f(y)$
f is a monotonic increasing function
Hence f is of bounded variation on every finite interval
However $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}} \rightarrow \infty$ as $x \rightarrow 0$

Total Variation

Definition 1.10:

Let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$ and let $\sum(P)$ denote the sum $\sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|$ corresponding to the partition $\mathrm{P}=\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ of $[\mathrm{a}, \mathrm{b}]$. Then the number
$V_{f}(a, b)=\sup \left(\sum\{P): P \in \mathcal{P}[a, b]\right\}$, is called the total variation of f on the interval $[\mathrm{a}, \mathrm{b}]$.

Note 1.11:

* We write V_{f} instead of $\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b})$
* Since f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$, then the total variation V_{f} is finite.
*Since each sum $\sum(\mathrm{P}) \geq 0, \mathrm{~V}_{\mathrm{f}} \geq 0$
* $\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b})=0 \Leftrightarrow \mathrm{f}$ is constant on $[\mathrm{a}, \mathrm{b}]$

Theorem1.12:

Assume that f and g are each of bounded variation on $[\mathrm{a}, \mathrm{b}]$. Then so are their sum, difference, and product. Also we have where $\mathrm{V}_{\mathrm{f} \pm \mathrm{g}} \& \mathrm{~V}_{\mathrm{f}}+\mathrm{V}_{\mathrm{g}}$ \&
$\mathrm{V}_{\mathrm{f} . \mathrm{g}} \leq \mathrm{AV}_{\mathrm{F}}+B \mathrm{~V}_{\mathrm{g}}, \mathrm{A}=\sup \{|\mathrm{g}(\mathrm{x})|: \mathrm{x} \in[\mathrm{a}, \mathrm{b}]\}, \mathrm{B}=\sup \{|\mathrm{f}(\mathrm{x})|: \mathrm{x} \in[\mathrm{a}, \mathrm{b}]\}$

Proof:

Given that f and g are each of bounded variation on $[\mathrm{a}, \mathrm{b}$]
\Rightarrow there exist a positive numbers $\mathrm{M}_{1}, \mathrm{M}_{2}>0$ such that for all partitions
$P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$, we have
$\sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right| \leq \mathrm{M}_{1}, \& \sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|<\mathrm{M}_{2}$
(i.e.) $\sum_{k=1}^{n}\left|\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \leq \mathrm{M}_{1}, \sum_{k=1}^{n} \mid \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid \leq \mathrm{M}_{2}\right.$
(i)To prove: $\mathrm{f}+\mathrm{g}$ is of bounded variation \& $\mathrm{V}_{\mathrm{f}+\mathrm{g}} \leq \mathrm{V}_{\mathrm{f}}+\mathrm{V}_{\mathrm{g}}$

Let $\mathrm{h}=\mathrm{f}+\mathrm{g}$
Now,

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| & \leq \sum_{k=1}^{n}\left|\mathrm{~h}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{h}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \\
& =\sum_{k=1}^{n}\left|(\mathrm{f}+\mathrm{g})\left(\mathrm{x}_{\mathrm{k}}\right)-(\mathrm{f}+\mathrm{g})\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \\
& =\sum_{k=1}^{n} \mid \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)+\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)+\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid\right. \\
& =\sum_{k=1}^{n}\left|\left[\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right]+\left[\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right]\right| \\
& \leq \sum_{k=1}^{n}\left\{\left|\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right|+\left|\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right|\right\} \\
& \left.\leq \sum_{k=1}^{n} \mid \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right]\left|+\sum_{k=1}^{n}\right| \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid
\end{aligned}
$$

$$
\leq \mathrm{M}_{1}+\mathrm{M}_{2}
$$

$\therefore \sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| \leq \mathrm{M}_{1}+\mathrm{M}_{2}$
Let $\mathrm{M}=\mathrm{M}_{1}+\mathrm{M}_{2}>0$
Hence $\mathrm{h}=\mathrm{f}+\mathrm{g}$ is of bounded variation on $[\mathrm{a}, \mathrm{b}$]
From equation (1)
$\sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| \leq \sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|+\sum_{k=1}^{n}\left|\Delta \mathrm{~g}_{\mathrm{k}}\right|$
Taking supremum, we get
$\Rightarrow V_{h} \leq V_{f}+V_{g}$
(i.e.) $V_{f+g} \leq V_{f}+V_{g}$
(ii) To prove: $\mathrm{f}-\mathrm{g}$ is of bounded variation \& $\mathrm{V}_{\mathrm{f}-\mathrm{g}} \leq \mathrm{V}_{\mathrm{f}}+\mathrm{V}_{\mathrm{g}}$

Let $\mathrm{h}=\mathrm{f}-\mathrm{g}$
Now, $\sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| \quad \leq \sum_{k=1}^{n}\left|\mathrm{~h}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{h}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right|$

$$
\leq \sum_{k=1}^{n}\left|(\mathrm{f}-\mathrm{g})\left(\mathrm{x}_{\mathrm{k}}\right)-(\mathrm{f}-\mathrm{g})\left(\mathrm{x}_{\mathrm{k}-1}\right)\right|
$$

$$
=\sum_{k=1}^{n} \mid \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\left(\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid\right.
$$

$$
=\sum_{k=1}^{n} \mid\left[\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right]+\left[\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right] \mid\right.
$$

$$
\leq \sum_{k=1}^{n}\left|\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right|+\left|\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right|
$$

$$
\begin{equation*}
\left.\leq \sum_{k=1}^{n} \mid \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right]\left|+\sum_{k=1}^{n}\right| \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid \tag{2}
\end{equation*}
$$

$$
\leq \mathrm{M}_{1}+\mathrm{M}_{2}
$$

$\therefore \sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| \leq \mathrm{M}_{1}+\mathrm{M}_{2}$
Let $\mathrm{M}=\mathrm{M}_{1}+\mathrm{M}_{2}>0$
Hence $\mathrm{h}=\mathrm{f}-\mathrm{g}$ is of bounded variation on $[\mathrm{a}, \mathrm{b}$]
From equation (2)
$\left.\sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| \quad \leq \sum_{k=1}^{n} \mid \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right]\left|+\sum_{k=1}^{n}\right| \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid$

$$
\leq \sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|+\sum_{k=1}^{n}\left|\Delta \mathrm{~g}_{\mathrm{k}}\right|
$$

Taking supremum, we get,
$\Rightarrow \mathrm{V}_{\mathrm{h}} \leq \mathrm{V}_{\mathrm{f}}+\mathrm{V}_{\mathrm{g}}$
(i.e.) $V_{f-g} \leq V_{f}+V_{g}$
(iii) fg is of bounded variation \& $\mathrm{V}_{\mathrm{f} . \mathrm{g}} \leq \mathrm{A} \mathrm{V}_{\mathrm{f}}+\mathrm{B} \mathrm{V}_{\mathrm{g}}$

Let $\mathrm{h}=\mathrm{fg}$
Now

$$
\begin{align*}
\sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| & \leq \sum_{k=1}^{n}\left|\mathrm{~h}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{h}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \\
& =\sum_{k=1}^{n}\left|(\mathrm{fg})\left(\mathrm{x}_{\mathrm{k}}\right)-(\mathrm{fg})\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \\
& =\sum_{k=1}^{n}\left|\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right) \cdot \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right) \cdot \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)+\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right) \cdot \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right) \cdot \mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \\
= & \sum_{k=1}^{n} \mid\left[\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)+\left[\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right] \mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid\right. \\
= & \sum_{k=1}^{n}\left|\left[\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)\right|+\mid\left[\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right] \mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid\right. \\
& \leq \sum_{k=1}^{n}\left|\left[\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right] \mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right)\right|+\sum_{k=1}^{n} \mid\left[\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}}\right] \mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right) \mid\right. \tag{3}
\end{align*}
$$

$$
\leq \mathrm{AM}_{1}+\mathrm{BM}_{2}
$$

$\therefore \sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| \leq \mathrm{AM}_{1}+\mathrm{BM}_{2}$
Let $\mathrm{M}=\mathrm{AM}_{1}+\mathrm{BM}_{2}>0$
Hence $h=f . g$ is of bounded variation on [a,b]
From equation (3)
$\sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right| \quad \leq \mathrm{A} \sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|+\mathrm{B} \sum_{k=1}^{n}\left|\Delta \mathrm{~g}_{\mathrm{k}}\right|$
Taking supremum, we get
$\Rightarrow \mathrm{V}_{\mathrm{h}} \leq \mathrm{A} \mathrm{V}_{\mathrm{f}}+\mathrm{B} \mathrm{V}_{\mathrm{g}}$
(i.e.) $\mathrm{V}_{\mathrm{f} . \mathrm{g}} \leq \mathrm{A} \mathrm{V}_{\mathrm{f}}+\mathrm{BV}_{\mathrm{g}}$

Note:

If f and g are each of bounded variation on $[a, b]$, then f / g need not be of bounded variation on [a, b]

For, if $f(x) \rightarrow 0$ as $x \rightarrow x 0$, then $1 / f$ will not be bounded on any interval containing
$\Rightarrow 1 / \mathrm{f}$ cannot be of bounded variation on such an interval [by Theorem1.8]
$\Rightarrow 1 / \mathrm{f}$ need not be of bounded variation

Theorem 1.13:

let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$ and assume that ' f ' is bounded away from zero; (i.e.) Suppose that there exists a positive number ' m ' such that $\mathrm{o}<\mathrm{m} \leq|\mathrm{f}(\mathrm{x})|$ for all a in $[\mathrm{a}, \mathrm{b}]$. Then $\mathrm{g}=1 / \mathrm{f}$ is also of bounded variation on $[\mathrm{a}, \mathrm{b}]$, and $\mathrm{V}_{\mathrm{g}} \leq \mathrm{V}_{\mathrm{f}} / \mathrm{m}^{2}$

Proof:

Let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$
\Rightarrow there exist a positive number $\mathrm{K}>0$ such that for all partition
$\mathrm{P}=\left\{\mathrm{a}=\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\}$,
we have $\sum_{k=1}^{n}\left|\Delta \mathrm{~h}_{\mathrm{k}}\right|<\mathrm{K}$
$\sum_{k=1}^{n}\left|\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \leq \mathrm{K}$
Assume f is bounded away from zero
(i.e.) there exist a positive number ' m ' such that $0<\mathrm{m} \leq|\mathrm{f}(\mathrm{x})|$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
$\Rightarrow \frac{1}{|f(x)|} \leq \frac{1}{m}<0$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
To prove that: $1 / \mathrm{f}$ is of bounded variation
Let $\mathrm{g}=1 / \mathrm{f}$
Now,

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\Delta \mathrm{~g}_{\mathrm{k}}\right| & \leq \sum_{k=1}^{n}\left|\mathrm{~g}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{g}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right| \\
& =\sum_{k=1}^{n}\left|\frac{1}{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\frac{1}{f}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right|
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{k=1}^{n}\left|\frac{1}{f\left(x_{k}\right)}-\frac{1}{f\left(x_{k-1}\right)}\right| \\
& =\sum_{k=1}^{n}\left|\frac{f\left(x_{k-1}\right)-f\left(x_{k}\right)}{f\left(x_{k}\right) f\left(x_{k-1}\right)}\right| \tag{1}\\
& \leq \mathrm{K} / \mathrm{m}^{2}
\end{align*}
$$

Let $\mathrm{M}=\mathrm{K} / \mathrm{m}^{2}>0$
$\therefore \sum_{k=1}^{n}\left|\Delta \mathrm{~g}_{\mathrm{k}}\right| \leq \mathrm{M}$
$\therefore \mathrm{g}=1 / \mathrm{f}$ is of bounded variation on $[\mathrm{a}, \mathrm{b}]$

From $1, \sum_{k=1}^{n}\left|\Delta \mathrm{~g}_{\mathrm{k}}\right| \quad \leq 1 / \mathrm{m}^{2} \sum_{k=1}^{n}\left|\Delta \mathrm{f}_{\mathrm{k}}\right|$

Taking supremum, we get,
$\mathrm{V}_{\mathrm{g}} \leq 1 / \mathrm{m}^{2} . \mathrm{V}_{\mathrm{f}}$
(i.e.) $\mathrm{V}_{\mathrm{g}} \leq \mathrm{V}_{\mathrm{f}} / \mathrm{m}^{2}$

Additive property of Total variation

Theorem 1.14:

Let f be of bounded variation on $[\mathrm{ab}]$ and assume that $\mathrm{c} \in[\mathrm{a}, \mathrm{b}]$. Then f is of bounded variation on $[\mathrm{a}, \mathrm{c}]$ and on $[\mathrm{c}, \mathrm{b}]$ and we have
$V_{f}(a, b)=V_{f}(a, c)+V_{f}(c, b)$.

Proof:

Let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$

Let $c \in(a, b)$

First, to prove f is of bounded variation on $[\mathrm{a}, \mathrm{c}] \&$ on $[\mathrm{c}, \mathrm{b}]$

Let $\mathrm{P}_{1}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{c}\right\} \in \mathcal{P}[\mathrm{a}, \mathrm{c}]$
$\mathrm{P}_{2}=\left\{\mathrm{c}=\mathrm{y}_{0}, \mathrm{y}_{1}, \ldots \mathrm{y}_{\mathrm{m}}=\mathrm{b}\right\} \in \mathcal{P}[\mathrm{c}, \mathrm{b}]$

Then $P=P_{1} U P P_{2}=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=c==y_{0}, y_{1}, \ldots y_{m}=b\right\} \in \mathcal{P}[a, b]$

From equation (1), we get,

$\Sigma(\mathrm{P}) \leq \mathrm{M}$ for all $\mathrm{M}>0$

Now, Clearly,
$\sum\left(\mathrm{P}_{1}\right) \leq \sum(\mathrm{P}) \& \sum\left(\mathrm{P}_{2}\right) \leq \sum(\mathrm{P})$
$\sum\left(\mathrm{P}_{1}\right) \leq \mathrm{M} \quad \& \sum\left(\mathrm{P}_{2}\right) \leq \mathrm{M}$ for all $\mathrm{M}>0$
$\therefore f$ is of bounded variation on $[\mathrm{a}, \mathrm{c}] \&$ on $[\mathrm{c}, \mathrm{b}]$
Second, to prove: $\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b})=\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{c})+\mathrm{V}_{\mathrm{g}}(\mathrm{c}, \mathrm{b})$
(i.e.) To Prove: $\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b}) \leq \mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{c})+\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b}) \& \mathrm{~V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b}) \geq \mathrm{V}_{f}(\mathrm{a}, \mathrm{c})+\mathrm{V}(\mathrm{c}, \mathrm{b})$

Now, We can write
$\sum\left(\mathrm{P}_{1}\right)+\sum\left(\mathrm{P}_{2}\right)=\sum(\mathrm{P}) \leq \mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b})$
$\sum\left(\mathrm{P}_{1}\right)+\sum\left(\mathrm{P}_{2}\right) \leq \mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b})$
$\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{c})+\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b}) \leq \mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b})$
To obtain the reverse inequality,
Let $\mathrm{P}=\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . \mathrm{x}_{\mathrm{n}}\right\} \in \mathcal{P}[\mathrm{a}, \mathrm{b}]$
$\because \mathrm{P}$ is a partition of $[\mathrm{a}, \mathrm{b}] \& \mathrm{c} \in[\mathrm{a}, \mathrm{b}]$, then there exist k such that $\mathrm{x}_{\mathrm{k}-1} \leq \mathrm{c} \leq \mathrm{x}_{\mathrm{k}}$
Define a new partition
$\mathrm{P}_{0}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{\mathrm{k}-1}, \mathrm{c}, \mathrm{x}_{\mathrm{k}}, \ldots \ldots \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\} \in \mathcal{P}[\mathrm{a}, \mathrm{b}]$

Let $\mathrm{P}_{1}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{k}-1}, \mathrm{c}\right\} \in \mathcal{P}[\mathrm{a}, \mathrm{c}]$ be a partition on $[\mathrm{a}, \mathrm{c}] \&$
Let $\mathrm{P}_{2}=\left\{\mathrm{c}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}, \ldots \ldots . . \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\} \in \mathcal{P}[\mathrm{c}, \mathrm{b}]$ be a partition on $[\mathrm{c}, \mathrm{b}]$
Then $\mathrm{P}_{0}=\mathrm{P}_{1} \mathrm{UP}_{2}$
Now, we have

$$
\begin{aligned}
\sum(\mathrm{P}) & \leq \sum\left(\mathrm{P}_{0}\right) \\
& =\sum\left(\mathrm{P}_{1}\right)+\sum\left(\mathrm{P}_{2}\right)
\end{aligned}
$$

(i.e.) $\sum(\mathrm{P}) \leq \sum\left(\mathrm{P}_{1}\right)+\sum(\mathrm{P} 2)$

Taking supremum, we get
$\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b}) \leq \mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{c})+\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b})$
From equation (3) \& (4),
$\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{b})=\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{c})+\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b})$

Total Variation on $[\mathbf{a}, \mathbf{x}]$ as a function of ' x ".

Theorem 1.15.

Let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$. Let V be defined on $[\mathrm{a}, \mathrm{b}]$ as follows:
$V(x)=V_{f}(a, x)$ if $a<x \leq b, v(a)=0$.
Then, (i) V is an increasing function on $[\mathrm{a}, \mathrm{b}]$
(ii) V-f is an increasing function on $[\mathrm{a}, \mathrm{b}]$

Proof:

Let f be of bounded variation on [a, b]

Let V: $[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ such that
$V(x)=\left\{\begin{array}{c}0 \text { if } x=a \\ V_{f}(a, x) \text { if } a<x \leq b\end{array}\right.$
(i)To prove: V is an increasing function on $[\mathrm{a}, \mathrm{b}]$

Let $\mathrm{x}, \mathrm{y} \in[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{a}<\mathrm{x}<\mathrm{y} \leq \mathrm{b}$

To prove: $\mathrm{V}(\mathrm{x}) \leq \mathrm{V}(\mathrm{y})$
Now, $\mathrm{a}<\mathrm{x}<\mathrm{y}$
$\Rightarrow \mathrm{V}_{f}(\mathrm{a}, \mathrm{y})=\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{x})+\mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \quad[\because$ by Theorem 1.14]
$\Rightarrow \mathrm{V}(\mathrm{y})=\mathrm{V}(\mathrm{x})+\mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y})[\because$ by equation $(1)]$
$\Rightarrow \mathrm{V}(\mathrm{y})-\mathrm{V}(\mathrm{x}) \geq \mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \quad\left[\mathrm{V}_{\mathrm{f}} \geq 0\right]$
(i.e.) $V(y)-V(x) \geq 0$
$\Rightarrow \mathrm{V}(\mathrm{x}) \leq \mathrm{V}(\mathrm{y})$
V is an increasing function on $[\mathrm{a}, \mathrm{b}]$.
ii) To prove: V-f is an increasing function on [a, b]

Let $\mathrm{x}, \mathrm{y} \in[\mathrm{a}, \mathrm{b}] \& \mathrm{a}<\mathrm{x}<\mathrm{y} \leq \mathrm{b}$
To prove: (V-f) (x) $\leq(V-\mathrm{f}) ~(\mathrm{y})$
(i.e.) To prove $\mathrm{V}(\mathrm{x})-\mathrm{f}(\mathrm{x}) \leq \mathrm{V}(\mathrm{y})-\mathrm{f}(\mathrm{y})$
(i.e.) To prove $f(y)-f(x) \leq v(y)-V(x)$

Now, $\mathrm{V}(\mathrm{y})-\mathrm{V}(\mathrm{x})=\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{y})-\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{x})$

$$
=\mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y})\left[\because \mathrm{a}<\mathrm{x}<\mathrm{y}\left[\mathrm{~V}_{\mathrm{f}}(\mathrm{a}, \mathrm{y})=\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{x})+\mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y})\right]\right.
$$

(i.e.) $V(y)-V(x)=V_{f}(x, y)$

Consider the partition $\mathrm{p}=\{\mathrm{x}, \mathrm{y}\} \in \mathrm{P}[\mathrm{x}, \mathrm{y}]$
This is the smallest partition on [x, y]
$\therefore \mathrm{V}_{\mathrm{f}}(\{\mathrm{x}, \mathrm{y}\})=|\mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{x})|$
Now, we know that $\mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \geq \mathrm{V}_{\mathrm{f}}(\{\mathrm{XY}\})$
$\Rightarrow \mathrm{V}(\mathrm{y})-\mathrm{V}(\mathrm{x}) \geq|\mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{x})|$

$$
\geq f(y)-f(x)
$$

(i.e.) $V(y)-V(x) \geq f(y)-f(x)$
\therefore (V-f) (x) $\leq(V-f)(y)$
Hence V-f is an increasing function on $[a, b]$

Note 1.16:

Let $\mathrm{g} \in \mathbb{R}$ on $[\mathrm{a}, \mathrm{b}]$ and define $\mathrm{f}(\mathrm{x})=\int_{a}^{x} g(t) d t$ if $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
Then the integral $\int_{a}^{x}|g(t)| d t$ is the total variation of ' f ' on $[\mathrm{a}, \mathrm{x}]$.
[(i.e.) For some functions f, the total variation $V_{f}(a, x)$ can be expressed as an integral.]

Proof:

Let $\mathrm{g} \in \mathrm{R}$
Let $\mathrm{f}(\mathrm{x})=\int_{a}^{x} g(t) \mathrm{dt}$ if $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
To prove: $\int_{a}^{x}|g(t)| \mathrm{dt}$ is the total variation of ${ }^{\prime} f^{\prime}$ on $[\mathrm{a}, \mathrm{x}]$
(i.e.)To prove: $\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{x})=\int_{a}^{x}|g(t)| \mathrm{dt}$

Functions of Bounded Variation Expressed as the Difference of Increasing Functions

Theorem 1.17:

Let f be defined on $[\mathrm{a}, \mathrm{b}]$. Then f is of bounded variation on [a, b] if and if only f can be expressed as the difference of two increasing functions.

Proof:

let f be defined on $[\mathrm{a}, \mathrm{b}$]
Let f be of bounded variation on [ab]
Let $\mathrm{V}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$
$\mathrm{V}(\mathrm{x})=\left\{\begin{array}{cl}0 & \text { if } x=a \\ V_{f}(a, x) & \text { if } a<x \leq b\end{array}\right.$
Then, we write
$\mathrm{f}(\mathrm{x})=\mathrm{V}(\mathrm{x})-[\mathrm{V}(\mathrm{x})-\mathrm{f}(\mathrm{x})]$
$\mathrm{f}(\mathrm{x})=\mathrm{V}(\mathrm{x})-(\mathrm{V}-\mathrm{f})(\mathrm{x})$
By Theorem 1.15,
V and $\mathrm{V}-f$ are both increasing functions on $[\mathrm{a}, \mathrm{b}]$
$\therefore f$ can be expressed as the difference of two Increasing functions.
Conversely,
Suppose that f can be expressed as the difference of two increasing functions.
Let $f=f_{1-}-f_{2}$ where $\mathrm{f}_{1} \& \mathrm{f}_{2}$ are increasing functions on $[\mathrm{a}, \mathrm{b}]$
$\because \mathrm{f}_{1} \& \mathrm{f}_{2}$ are increasing function on $[\mathrm{a}, \mathrm{b}] \&$ by Theorem1. 6
$f_{1} \& f_{2}$ are of bounded variation on $[\mathrm{a}, \mathrm{b}]$
$\Rightarrow \mathrm{f}_{1} \& \mathrm{f}_{2}$ is of bounded variation on $[\mathrm{a}, \mathrm{b}] \quad[\because$ by Theorem1.11]
(i.e.) f is a bounded variation on $[\mathrm{a}, \mathrm{b}]$

Note 1.18:

The above Theorem 1:17 holds if "Increasing" is replaced by strictly increasing"
The representation of a function of bounded variance as a difference of two increasing functions is by no means unique.

If $f=\mathrm{f}_{1}-\mathrm{f}_{2}$ where $\mathrm{f}_{1} \& \mathrm{f}_{2}$ are increasing,
then $f=\left(\mathrm{f}_{1}+\mathrm{g}\right)-\left(\mathrm{f}_{2}+\mathrm{g}\right)$ where g is an arbitrary increasing function
We get a new representation of f
If ' g ' is strictly increasing, then the same will be true of $\mathrm{f}_{1}+\mathrm{g}$ and $\mathrm{f}_{2}+\mathrm{g}$. Hence the Theorem1.17 holds if "increasing" is replaced by "strictly increasing".

Continuous Functions of Bounded Variation.

Theorem 1.19:

Let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$. If $\mathrm{x} \in(\mathrm{a}, \mathrm{b}]$, let $\mathrm{V}(\mathrm{x})=\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{x})$ and put $\mathrm{V}(\mathrm{a})=0$. Then every point of continuity of f is also a point of continuity of V . The converse is also true.

Proof:

Let f be of bounded variation on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{V}(\mathrm{x})=\left\{\begin{array}{cl}0 & \text { if } x=a \\ V_{f}(a, x) & \text { if } a<x \leq b\end{array}\right.$
Case(i)
Assume that ' V ' is a continuous function
Given: $\varepsilon>0$, there exist $\delta>0$ such that $|\mathrm{y}-\mathrm{x}|<\delta \Rightarrow|\mathrm{V}(\mathrm{y})-\mathrm{V}(\mathrm{x})|<\varepsilon$
To prove: f is a continuous function

By Theorem 1.15,
$\Rightarrow \mathrm{V} \& \mathrm{~V}$-f is a monotonic increasing function
$\Rightarrow \mathrm{V}(\mathrm{x}+) \& \mathrm{~V}(\mathrm{x}-)$ exist for each $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$

By Theorem 1.17,
f is monotonic
$\Rightarrow \mathrm{f}(\mathrm{x}+)$ and $\mathrm{f}(\mathrm{x}-)$ exist for each $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$.

Let $\mathrm{a}<\mathrm{x}<\mathrm{y} \leq \mathrm{b}$.
Then by the definition of $\mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y})$
$0 \leq|\mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{x})| \leq \mathrm{V}_{\mathrm{f}}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& \leq V_{f}(a, y)-V_{f}(a, x) \\
& =V(y)-V(x)
\end{aligned}
$$

$\therefore 0 \leq|\mathrm{f}(\mathrm{y})-\mathrm{f}(\mathrm{x})| \leq \mathrm{V}(\mathrm{y})-\mathrm{V}(\mathrm{x})$

$$
\begin{aligned}
& \leq|\mathrm{V}(\mathrm{y})-\mathrm{V}(\mathrm{x})| \\
& \leq \varepsilon
\end{aligned}
$$

$|f(\mathrm{y})-\mathrm{f}(\mathrm{x})| \leq \varepsilon$
$\therefore f$ is a continuous function
\therefore A point of continuity of ' V ' is a point of continuity of f.

Case(ii)

Given f is a continuous function.
To prove, V is a continuous function

Let f be continuous at $\mathrm{c} \in(\mathrm{a}, \mathrm{b}) \mathrm{c}$
\Rightarrow given $\varepsilon>0$ and $\delta>0$ such that $|\mathrm{x}-\mathrm{c}|<\delta$
$\Rightarrow|f(x)-f(y)|<\varepsilon / 2$

For this ' ε ', there exist a partition P of $[\mathrm{c}, \mathrm{b}]$, say
$\mathrm{P}=\left\{\mathrm{c}=\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots . \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\}$ such that $\sum_{k=1}^{n}\left|\Delta f_{k}\right|>\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b})-\varepsilon / 2$

Assume that $0<\left|\mathrm{x}_{1}-\mathrm{x}_{0}\right|<\delta$
$\Rightarrow\left[f\left(x_{1}\right)-f\left(x_{0}\right) \mid<\varepsilon / 2[\mathrm{f}\right.$ is continuous]

From equation (2)
$\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b})-\varepsilon / 2<\sum_{k=1}^{n}\left|\Delta f_{k}\right|$

$$
\begin{aligned}
& =\left|\Delta \mathrm{f}_{1}\right|+\sum_{k=1}^{n}\left|\Delta f_{k}\right| \\
& =\left|\mathrm{f}\left(\mathrm{x}_{1}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)+\sum_{k=1}^{n}\right| \Delta f_{k} \mid \\
& <\varepsilon / 2+\mathrm{V}_{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{~b}\right) \quad\left[\because \text { by equation (3) \& Definition of } \mathrm{V}_{\mathrm{f}}\right]
\end{aligned}
$$

$\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b})-\varepsilon / 2<\varepsilon / 2+\mathrm{V}_{\mathrm{f}}\left(\mathrm{X}_{1}, \mathrm{~b}\right)$
$\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b})-\mathrm{V}_{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{~b}\right)<\varepsilon / 2+<\varepsilon / 2$
$<\varepsilon$
$\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{b})-\mathrm{V}_{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{~b}\right)<\varepsilon$

Let $\left|x_{1}-c\right|<\delta$

Now,

$$
\begin{aligned}
\mathrm{V}\left(\mathrm{x}_{1}\right)-\mathrm{V}(\mathrm{c}) & =\mathrm{V}_{\mathrm{f}}\left(\mathrm{a}, \mathrm{x}_{1}\right)-\mathrm{V}_{\mathrm{f}}(\mathrm{a}, \mathrm{c}) \\
& =\mathrm{V}_{\mathrm{f}}\left(\mathrm{c}, \mathrm{x}_{1}\right) \\
& =\mathrm{V}_{\mathrm{f}}(\mathrm{c}, \mathrm{~b})-\mathrm{V}_{\mathrm{f}}\left(\mathrm{x}_{1}, \mathrm{~b}\right) \\
& <\varepsilon \quad \quad \text { (by equation }(4))
\end{aligned}
$$

$\therefore \mathrm{V}\left(\mathrm{x}_{1}\right)-\mathrm{V}(\mathrm{c})<\varepsilon$
(i.e.) $\left|\mathrm{x}_{1}-\mathrm{c}\right|<\delta \Rightarrow\left|\mathrm{V}\left(\mathrm{x}_{1}\right)-\mathrm{V}(\mathrm{c})\right|<\varepsilon$
$\therefore \mathrm{V}(\mathrm{c}+)=\mathrm{V}(\mathrm{c})$
Similarly, $V(c-)=V(c)$
$\therefore \mathrm{V}$ is continuous at a point c
Hence V is a continuous function.

Thus a point of continuity of f is a point of continuity of V.

Theorem 1.20:

Let f be continuous on $[\mathrm{a}, \mathrm{b}]$. Then f is of bounded variation on [a, b] if and only if f can be expressed as the difference of two increasing continuous functions.

Proof:

Combining Theorem 1.19 with 1.17, we can state 1.20 .

Absolute and Conditional Convergence

Definition 1.21:

A series $\sum \mathrm{a}_{\mathrm{n}}$ is called absolutely convergent if $\sum\left|\mathrm{a}_{\mathrm{n}}\right|$ converges. It is called conditionally convergent if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

Theorem 1.22:

Absolute convergence of $\sum a_{n}$ implies convergence

Proof:

Given $\sum a_{n}$ is absolute convergence
(i.e.) $\sum\left|a_{n}\right|$ converges

To prove: $\sum \mathrm{a}_{\mathrm{n}}$ converges
By Cauchy's condition for convergent series,
[The series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if for all $\varepsilon>0$, there exist $\mathrm{N} \in \mathrm{N}$ such that if $\mathrm{n} \geq \mathrm{N}$ then
$\left|a_{n+1}, a_{n+2}, \ldots \ldots, a_{n+p}\right|<\varepsilon$ for each $\left.p=1,2,3, \ldots \ldots\right]$
For all $\varepsilon>0$, there exist $N \in N$ such that if $n \geq N$ then
$\left|a_{n+1}\right|+\left|a_{n+2}\right|+\ldots \ldots . .+\left|a_{n+p}\right|<\varepsilon$ for each $p=1,2,3, \ldots \ldots$.

We know that,

Hence $\sum \mathrm{a}_{\mathrm{n}}$ converges.

Note 1.23:

The converse of the above Theorem is not true.
For example, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is the convergent series.
But $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ is not a convergent series.

Theorem 1.24:

Let $\sum \mathrm{a}_{\mathrm{n}}$ be a given series with real-valued terms and define $\mathrm{p}_{\mathrm{n}}=\frac{\left|a_{n}\right|+a_{n}}{2}, \mathrm{q}_{\mathrm{n}}=\frac{\left|a_{n}\right|-a_{n}}{2} .(\mathrm{n}=1,2 \ldots \ldots$. Then
(i) If $\sum \mathrm{a}_{\mathrm{n}}$ is conditionally convergent, both $\leq \sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ diverge
(ii) If $\sum\left|\mathrm{a}_{\mathrm{n}}\right|$ converges, both $\sum \mathrm{p}_{\mathrm{n}}$ and $\sum \mathrm{q}_{\mathrm{n}}$ converges and we have
$\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} p_{n}-\sum_{n=1}^{\infty} q_{n}$

Proof:

Let $\sum a_{n}$ be a given series with real-valued terms
Define $\mathrm{p}_{\mathrm{n}}=\frac{\left|a_{n}\right|+a_{n}}{2}, \mathrm{q}_{\mathrm{n}}=\frac{\left|a_{n}\right|-a_{n}}{2}$
$\Rightarrow \mathrm{P}_{\mathrm{n}}=\left\{\begin{array}{c}a_{n} \text { if } a_{n} \geq 0 \\ 0 \text { if } a_{n}<0\end{array} \quad \& \mathrm{q}_{\mathrm{n}}=\left\{\begin{array}{c}a_{n} \text { if } a_{n} \geq 0 \\ 0 \text { if } a_{n}<0\end{array}\right.\right.$
$\Rightarrow \mathrm{P}_{\mathrm{n}} \geq 0 \& \mathrm{q}_{\mathrm{n}} \geq 0$

Also $\mathrm{p}_{\mathrm{n}}-\mathrm{q}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}} \& \mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}=\mathrm{la}_{\mathrm{n}} \mid$
(i) Given $\sum a_{n}$ is conditionally convergent
$\Rightarrow \sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges
To prove: $\sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ diverge
If $\sum \mathrm{p}_{\mathrm{n}}$ converges,
$\Rightarrow \sum \mathrm{q}_{\mathrm{n}}$ converges $\left(\because \mathrm{q}_{\mathrm{n}}=\mathrm{p}_{\mathrm{n}}-\mathrm{a}_{\mathrm{n}}\right)$
If $\sum q_{n}$ converges,
$\Rightarrow \mathrm{p}_{\mathrm{n}}$ converges $\left(\because \mathrm{p}_{\mathrm{n}}=\mathrm{q}_{\mathrm{n}}+\mathrm{a}_{\mathrm{n}}\right)$
Hence if $\sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ converges, both $\sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ converges
$\Rightarrow \sum \mathrm{p}_{\mathrm{n}}+\sum \mathrm{q}_{\mathrm{n}}$ converges
[by Theorem1.22, let $\sum \mathrm{a}_{\mathrm{n}}$ and $\sum \mathrm{b}_{\mathrm{n}}$ converges. Then $\sum\left(\alpha \mathrm{a}_{\mathrm{n}}+\beta \mathrm{a}_{\mathrm{n}}\right)$ converges. For all $\alpha, \beta \&$ $\left.\sum\left(\alpha a_{n}+\beta \mathrm{a}_{\mathrm{n}}\right)=\alpha \sum \mathrm{a}_{\mathrm{n}}+\beta \sum \mathrm{b}_{\mathrm{n}}\right]$
which is a contradiction to equation (3)
Hence $\sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$
(ii) Given $\sum\left|a_{n}\right|$ converges

To prove: $\sum \mathfrak{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ converge and $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} p_{n}-\sum_{n=1}^{\infty} q_{n}$
$\sum\left|a_{n}\right|$ converges
$\Rightarrow \sum\left(\mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}\right)$ converges
$\Rightarrow \sum \mathrm{p}_{\mathrm{n}}+\sum \mathrm{q}_{\mathrm{n}}$ converges
$\Rightarrow \sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ converges
Now, $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}\left(p_{n}-\mathrm{q}_{\mathrm{n}}\right)$
[by Theorem 1.22, let $\sum p_{n}$ and $\sum q_{n}$ converges. Then $\sum\left(\alpha p_{n}+\beta q_{n}\right)$ converges.
For all $\alpha, \beta \& \sum\left(\alpha p_{n}+\beta q_{n}\right)=\alpha \sum p_{n}+\beta \sum q_{n]}$
$\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} p_{n}-\sum_{n=1}^{\infty} q_{n}$

Dirichlet's Test and Abel's Test

Theorem 1.25:

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences of complex numbers, define
$A_{n}=a_{1}+a_{2}+\ldots . .+a_{n}$. Then we have the identity
$\sum_{n=1}^{\infty} a_{k} b_{k}=\mathrm{A}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}+1}-\sum_{n=1}^{\infty} A_{k}\left(b_{k+1)}-b_{k}\right)$
Therefore $\sum_{n=1}^{\infty} a_{k} b_{k}$ converges if both the series. $\sum_{n=1}^{\infty} A_{k}\left(b_{k+1)}-b_{k}\right)$ and the sequence $\left\{\mathrm{A}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}+1}\right\}$ converge.

Proof:

Let $\left\{a_{n}\right\} \&\left\{b_{n}\right\}$ be two sequences of complex numbers
Define $A_{n}=a_{1}+a_{2}+\ldots .+a_{n}$
$\mathrm{a}_{\mathrm{k}}=\mathrm{A}_{\mathrm{k}}-\mathrm{A}_{\mathrm{k}-1}$
Let $\mathrm{A}_{0}=0$

Now,
$\sum_{n=1}^{\infty} a_{k} b_{k} \quad=\sum_{k=1}^{n}\left[A_{k}-A_{k-1}\right] b_{k}$

$$
=\sum_{k=1}^{n} A_{k} b_{k}-\sum_{n=1}^{\infty} A_{k-1} b_{k}
$$

$$
=\sum_{k=1}^{n} A_{k} b_{k}-\sum_{n=1}^{\infty} A_{k} b_{k+1}-\mathrm{A}_{0} \mathrm{~b}_{1}+\mathrm{A}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}+1}
$$

$$
=\sum_{k=1}^{n} A_{k}\left(b_{k}-b_{k+1}\right)+\mathrm{A}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}+1}
$$

$\therefore \sum_{n=1}^{\infty} a_{k} b_{k}=\mathrm{A}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}+1}-\sum_{n=1}^{\infty} A_{k}\left(b_{k+1}-b_{k}\right)$
Now,
$\sum_{n=1}^{\infty} a_{k} b_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} b_{k}$

$$
=\lim _{n \rightarrow \infty}\left[A_{n} b_{n+1}-\sum_{k=1}^{n} A_{k}\left(b_{k+1}-b_{k}\right)\right.
$$

$\sum_{n=1}^{\infty} a_{k} b_{k}=\lim _{n \rightarrow \infty}\left[A_{n} b_{n+1}-\sum_{k=1}^{n} A_{k}\left(b_{k+1}-b_{k}\right)\right.$
$\because\left\{\mathrm{A}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}+1}\right\} \& \sum_{k=1}^{\infty} A_{k}\left(b_{k+1}+b_{k}\right)$ Converge, by Theorem8.8
$\sum_{n=1}^{\infty} a_{k} b_{k}$ converges

Theorem1.26: (Dirichlet's Test)

Let $\sum a_{n}$ be a series of complex terms whose partial sums form a bounded sequence. Let $\left\{b_{n}\right\}$ be a decreasing sequence which converges to 0 . Then $\sum a_{n} b_{n}$ converges

Proof:

Let $\sum a_{n}$ be a series of complex terms whose partial Sums form a bounded sequence.
Let $A_{n}=a_{1}+a_{2}+\ldots . . a_{n}$

Given $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ bounded.
There exist $\mathrm{M}>0$ such that $\mid \mathrm{A}_{\mathrm{n}} \leq \mathrm{M}$ for all $\mathrm{n} \in \mathrm{N}$

Let $\left\{\mathrm{b}_{\mathrm{n}}\right\}$ be a decreasing sequence which converges to 0
(i.e.) $\lim _{n \rightarrow \infty} b_{n}=0$

From equation (1) \& (2)
$\lim _{n \rightarrow \infty} A_{n} b_{n+1}=0$
(i.e.) $\left\{A_{n} b_{n+1}\right\}$ converges

It is enough to prove that $\sum A_{n}\left(b_{n+1}-b_{n}\right)$ converges
Now,
$\sum_{n=1}^{\infty} A_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right) \quad=\sum_{n=1}^{\infty}\left|A_{n}\right|\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)$
$\leq \sum_{n=1}^{\infty} M .\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)$ converges
$=\mathrm{M} \cdot \sum_{n=1}^{\infty}\left(\mathrm{b}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}+1}\right)$
$\sum_{n=1}^{n} A_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right) \quad \leq \mathrm{M} . \sum_{n=1}^{n}\left(\mathrm{~b}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}+1}\right)$
Let $\mathrm{S}_{\mathrm{n}}=\sum_{n=1}^{\infty}\left(\mathrm{b}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}+1}\right)=\mathrm{b}_{1}-\mathrm{b}_{\mathrm{n}+1}$
$\Rightarrow \lim _{n \rightarrow \infty} S_{\mathrm{n}}=\lim _{n \rightarrow \infty} b_{1}-\mathrm{b}_{\mathrm{n}+1}=\mathrm{b}_{1}-0=\mathrm{b}_{1}$
$\therefore \sum_{n=1}^{\infty}\left(\mathrm{b}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}+1}\right)$ converges
$\Rightarrow \mathrm{M} . \sum_{n=1}^{\infty}\left(\mathrm{b}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}+1}\right)$ converges
By comparison test, we have
$\sum_{n=1}^{\infty} A_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)$ converges
From equation (3) \& (4)
$\left.\therefore \mathrm{A}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}+1}\right\} \& \sum \mathrm{~A}_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)$ converges
By Theorem 1.25,
$\sum \mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}$ converges.

Theorem 1.27:(Abel's Test)

The series $\sum a_{n} b_{n}$ converges if $\sum a_{n}$ converges and if $\left\{b_{n}\right\}$ is a monotonic convergent sequence.

Proof:

Given $\sum a_{n}$ converges and $\left\{b_{n}\right\}$ is a monotonic convergent sequence.
Let $A_{n}=a_{1}+a_{2}+\ldots .+a_{n}$
$\because \sum a_{n}$ converges, then the sequence of partial sums
$\lim _{n \rightarrow \infty} A_{n}$ converges
\Rightarrow This sequence $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ bounded
$\Rightarrow \mathrm{M}>0$ such that : $\left|\mathrm{A}_{\mathrm{n}}\right|<\mathrm{M}$ for every $\mathrm{n} \in \mathrm{N}$ \qquad
$\because\left\{\mathrm{b}_{\mathrm{n}}\right\}$ is a convergent sequence $\&$ by equation (1),
$\lim _{n \rightarrow \infty} A_{n} b_{n+1}$ converges
Now,

$$
\begin{align*}
\sum_{n=1}^{\infty}\left|\mathrm{A}_{\mathrm{n}}\left(\mathrm{~b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)\right| & =\sum_{n=1}^{\infty}\left|\mathrm{A}_{\mathrm{n}}\right| \cdot\left|\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)\right| \\
& \leq \sum_{n=1}^{\infty}|\mathrm{M} \cdot|\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right) \mid \\
& \leq \mathrm{M} \sum_{n=1}^{\infty}\left|\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)\right| \\
\sum_{n=1}^{\infty}\left|\mathrm{A}_{\mathrm{n}}\left(\mathrm{~b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)\right| & \leq \mathrm{M} \sum_{n=1}^{\infty}\left|\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)\right| \tag{3}
\end{align*}
$$

Case(i)

$\left\{b_{n}\right\}$ is a monotonically increasing sequence

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|b_{n+1}-b_{n}\right|=\sum_{n=1}^{\infty}\left(b_{n+1}-b_{n}\right) \\
& \Rightarrow \lim _{n \rightarrow \infty} \sum_{n=1}^{\infty}\left|\left(b_{n+1}-b_{n}\right)\right|=-b_{1}
\end{aligned}
$$

(i.e.) $\sum_{n=1}^{\infty}\left|\left(b_{n+1}-b\right)\right|$ converges to $-b_{1}$

Case (ii)

$\left\{b_{n}\right\}$ is a monotonically decreasing sequence.

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|b_{n+1}-b_{n}\right|=\sum_{n=1}^{\infty}\left(b_{n+1}-b_{n}\right) \\
& \Rightarrow \lim _{n \rightarrow \infty} \sum_{n=1}^{\infty}\left|\left(b_{n+1}-b_{n}\right)\right|=b_{1}
\end{aligned}
$$

(i.e.) $\sum_{n=1}^{\infty}\left|\left(b_{n+1}-b_{n}\right)\right|$ converges to b_{1}

In either case we see that the series
$\sum_{n=1}^{\infty}\left|\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right|$ converges $\Rightarrow \mathrm{M} . \sum_{n=1}^{\infty}\left|\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right|$ converges.
By comparison Test,
$\sum_{n=1}^{\infty}\left|\mathrm{A}_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)\right|$ converges.
$\Rightarrow \sum_{n=1}^{\infty}\left|\mathrm{A}_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}\right)\right|$ converges
From equation (2) and (3), by Theorem 1.25,
$\sum \mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}$ converges.

Rearrangements of Series

Definition 1.28:

Let f be a function whose domain is Z^{+}and whose range is Z^{+}, and assume that ' f ' is one-one on Z^{+}. Let $\sum a_{n}$ and $\sum b_{n}$ be two series such that $b_{n}=a_{f(n)}$ for $n=1,2, \ldots$

Then $\sum b_{n}$ is said to be a rearrangement of $\sum a_{n}$.
$\left(\mathrm{Z}^{+}=\{1,2,3, \ldots\}, \mathrm{b}_{\mathrm{n}}=\mathrm{a}_{\mathrm{f}(\mathrm{n})} \Rightarrow a_{n}=b_{f^{-1}(n)}\right)$
$\sum a_{n}$ is also a rearrangement of $\sum b_{n}$
$\sum a_{n}$ is also a rearrangement of $\sum b_{n}$

Theorem1.29:

Let $\sum \mathrm{a}_{\mathrm{n}}$ be an absolutely convergent series having sum S . Then every rearrangement of $\sum \mathrm{a}_{\mathrm{n}}$ also converges absolutely and has sum S .

Proof:

Let $\sum \mathrm{a}_{\mathrm{n}}$ be an absolutely convergent series having Sum ' S '
(i.e.) $\sum \mathrm{a}_{\mathrm{n}}$ converges $\&\left|\sum \mathrm{a}_{\mathrm{n}}\right|=\mathrm{S}$

Let $\mathrm{f}: \mathrm{Z}^{+} \rightarrow \mathrm{Z}^{+}$\& assume that f is $1-1$
Let $\sum \mathrm{b}_{\mathrm{n}}$ be a rearrangement of $\sum \mathrm{a}_{\mathrm{n}}$
Define $b_{n}=a_{f(n)}$ for every $n=1,2,3, \ldots$
To prove: $\sum \mathrm{b}_{\mathrm{n}}$ converges absolutely and $\sum \mathrm{b}_{\mathrm{n}}=\mathrm{S}$
(i.e.) To prove: $\sum\left|\mathrm{b}_{\mathrm{n}}\right|$ converges $\& \sum \mathrm{~b}_{\mathrm{n}}=\mathrm{S}$

Now,
$\left|b_{1} 1+\mathrm{lb}_{2}\right|+\ldots \ldots \ldots .+\left|\mathrm{b}_{\mathrm{n}}\right| \quad=\left|\mathrm{a}_{\mathrm{f}(1)}\right|+\left|\mathrm{a}_{\mathrm{f}(2)}\right|+\ldots \ldots .+\left|\mathrm{a}_{\mathrm{f}(\mathrm{n})}\right|$

$$
=\left|a_{1}\right|+\left|a_{2}\right|+\ldots \ldots+\left|a_{n}\right|
$$

$$
\leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots \ldots+\left|a_{n}\right|
$$

$$
=\sum_{n=1}^{\infty}\left|a_{n}\right|=S \quad(\text { by } 1)
$$

$\therefore\left|\mathrm{b}_{1}\right|+\left|\mathrm{b}_{2}\right|+\ldots \ldots .\left|\mathrm{b}_{\mathrm{n}}\right|<\mathrm{S}$
(i.e.) $\sum\left|b_{n}\right|$ has bounded partial sum
$\therefore \sum\left|\mathrm{b}_{\mathrm{n}}\right|$ converges
(i.e.) $\sum \mathrm{b}_{\mathrm{n}}$ converges absolutely

Now, to prove $\sum \mathrm{b}_{\mathrm{n}}=\mathrm{S}$
Let $t_{n}=b_{1}+b_{2}+$. \qquad $+b_{n} \& S_{n}=a_{1}+a_{2}+$ \qquad $+a_{n}$

Given $\varepsilon>0$, choose N so that $\left|\mathrm{S}_{\mathrm{N}}-\mathrm{S}\right|<\varepsilon / 2$
$\left\|\mathbf{S}_{\mathrm{N}}\left|-\left|\mathrm{S} \|=\left|\mathrm{S}_{\mathrm{N}}-\mathrm{S}\right|<\varepsilon / 2\right.\right.\right.$
$\Rightarrow\left|\left|a_{1}\right|+\left|a_{2}\right|+\ldots . .+\left|a_{N}\right|-\left(\left|a_{1}\right|+\left|a_{2}\right|+\ldots .+\left|a_{N}\right|+\left|a_{N+1}\right|+\ldots ..\right)\right|<\varepsilon / 2$
$\Rightarrow\left|-\left(\left|\mathrm{a}_{\mathrm{N}+1}\right|+\left|\mathrm{a}_{\mathrm{N}+2}\right|+\ldots \ldots ..\right)\right|<\varepsilon / 2$
$\Rightarrow \sum_{K=1}^{\infty}\left|\mathrm{a}_{\mathrm{N}+\mathrm{K}}\right|<\varepsilon / 2$
Now,
$\left|t_{n}-S\right|=\left|t_{n}-S_{N}+S_{N}-S\right|$

$$
\begin{equation*}
\leq\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}_{\mathrm{N}}\right|+\left|\mathrm{S}_{\mathrm{N}}-\mathrm{S}\right| \tag{5}
\end{equation*}
$$

$\therefore\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}\right|<\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}_{\mathrm{N}}\right|+\varepsilon / 2 \quad$ (by 3)
Choose M so that $\{1,2 \ldots ., \mathrm{N}\} \subseteq\{f(1) \mathrm{f}(2), \ldots . ., \mathrm{f}(\mathrm{M})\}$
Then $\mathrm{n}>\mathrm{M} \Rightarrow \mathrm{f}(\mathrm{n})>\mathrm{N}$, and for such ' n ' we have

$$
\begin{aligned}
\left|t_{n}-S_{N}\right| & =\left|b_{1}+b_{2}+\ldots \ldots .+b_{n}-\left(a_{1}+a_{2}+\ldots \ldots . a_{N}\right)\right| \\
& =\left|a_{f(1)}+a_{f(2)}+\ldots \ldots . .+a_{f(n)}\right|-\left(a_{1}+a_{2}+\ldots . .+a_{N}\right) \mid \\
& =\left|a_{1}+a_{2}+\ldots \ldots+a_{n}-\left(a_{1}+a_{2}+\ldots \ldots .+a_{N}\right)\right| \\
& =\left|a_{N+1}+a_{N+2}+\ldots \ldots .+a_{n}\right| \\
& =\left|a_{N+1}\right|+\left|a_{N+2}\right|+\ldots \ldots+\left|a_{N}\right| \\
& \leq\left|a_{N+1}\right|+\left|a_{N+2}\right|+\ldots \ldots \\
& =\sum_{K=1}^{\infty}\left|a_{N+K}\right| \\
& <\varepsilon / 2 \quad \text { (by } 4)
\end{aligned}
$$

$$
\begin{equation*}
\therefore\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}_{\mathrm{N}}\right|<\varepsilon / 2 \tag{6}
\end{equation*}
$$

Now, (5) $\Rightarrow\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}_{\mathrm{N}}\right|<\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}_{\mathrm{N}}\right|+\varepsilon / 2$

$$
\begin{aligned}
& <\varepsilon / 2+\varepsilon / 2 \quad \text { (by equation (6)) } \\
& =\varepsilon
\end{aligned}
$$

$\therefore\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}_{\mathrm{N}}\right|<\varepsilon$

Hence for all $\varepsilon>0$, there exist M such that $\left|t_{n}-S_{N}\right|<\varepsilon$ for all $n>M$
$\lim _{n \rightarrow \infty} t_{n}=S$

Riemann's Theorem on Conditionally Convergent Series:

Theorem 1.30:

Let $\sum \mathrm{a}_{\mathrm{n}}$ be a conditionally convergent series with real-valued terms. Let x and y be given numbers in the closed interval $[-\infty,+\infty]$, with $\mathrm{x} \leq \mathrm{y}$. Then there exists a rearrangement $\sum \mathrm{b}_{\mathrm{n}}$ of $\sum \mathrm{a}_{\mathrm{n}}$ such that $\lim _{n \rightarrow \infty} \inf \mathrm{t}_{\mathrm{n}}=\mathrm{x}$ and $\lim _{n \rightarrow \infty} t_{n} \sup \mathrm{t}_{\mathrm{n}}=\mathrm{y}$,
where $t_{n}=b_{1}+b_{2}+\ldots . .+b_{n}$

Proof:

Let $\sum a_{n}$ be a conditionally convergent series with real-valued terms.
Let $-\infty \leq x \leq y \leq \infty$
Discarding those terms of a series which are zero does not affect its convergence or divergence.
Hence we might as well assume that no terms of $\sum a_{n}$ are zero
Let P_{n} denote the $\mathrm{n}^{\text {th }}$ positive term of $\sum \mathrm{a}_{\mathrm{n}} \&$
Let $-\mathrm{q}_{\mathrm{n}}$ denote the $\mathrm{n}^{\text {th }}$ negative term of $\sum \mathrm{a}_{\mathrm{n}}$.
Define $\mathrm{p}_{\mathrm{n}}=\frac{\left|a_{n}\right|+a_{n}}{2} \& \mathrm{q}_{\mathrm{n}}=\frac{\left|a_{n}\right|-a_{n}}{2} \quad(\mathrm{n}=1,2,3, \ldots \ldots$.
$\Rightarrow \mathrm{p}_{\mathrm{n}}=\left\{\begin{array}{c}a_{n} \text { if } a_{n} \geq 0 \\ 0 \text { if } a_{n}<0\end{array}\right.$ and $\Rightarrow \mathrm{q}_{\mathrm{n}}=\left\{\begin{array}{c}-a_{n} \text { if } a_{n} \leq 0 \\ 0 \text { if } a_{n}>0\end{array}\right.$
$\Rightarrow \mathrm{p}_{\mathrm{n}} \geq 0$ and $\mathrm{q}_{\mathrm{n}} \geq 0$
$\Rightarrow \mathrm{p}_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}=\left|\mathrm{a}_{\mathrm{n}}\right| \& \mathrm{p}_{\mathrm{n}}-\mathrm{q}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}$
$\because \sum a_{n}$ is conditionally convergent,
$\sum \mathrm{a}_{\mathrm{n}}$ converges but $\sum \mid \mathrm{a}_{\mathrm{n}} 1$ diverges
If $\sum \mathrm{p}_{\mathrm{n}}$ converges $\&$ by $1, \sum \mathrm{q}_{\mathrm{n}}$ converges.
If $\sum \mathrm{q}_{\mathrm{n}}$ converges $\&$ by $1, \sum \mathrm{p}_{\mathrm{n}}$ converges.
(i.e.) both $\sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ converges
$\Rightarrow \sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ converges
$\Rightarrow \sum\left|a_{n}\right|$ converges.

Contradiction to equation (2)

Hence $\sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ divergences.

Let $\left\{x_{n}\right\} \&\left\{y_{n}\right\}$ be two sequences of real numbers there exist
$\lim _{n \rightarrow \infty} x_{n}=\mathrm{x} \quad \& \lim _{n \rightarrow \infty} y_{n}=\mathrm{y}$ with $\mathrm{x}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{1}>0$
Let $\left(k_{1}, r_{1}\right)$ be the least positive integer there exist
$\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots \ldots+p_{K_{1}}>\mathrm{y}_{1}$ with $\mathrm{y}_{1}>0$
$\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots \ldots+p_{K_{1}}-\mathrm{q}_{1}-\mathrm{q}_{2}-\ldots . .-q_{r_{1}}+p_{K_{1+1}}+p_{K_{1+2}}+\ldots \ldots .+p_{K_{2}}>\mathrm{y}_{2} \&$
$\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots \ldots .+p_{K_{1}}-\mathrm{q}_{1}-\mathrm{q}_{2}-\ldots . .-q_{r_{1}}+p_{K_{1+1}}+p_{K_{2+2}}+\ldots \ldots .+p_{K_{2}}-q_{r_{1+1}}$

$$
-q_{r_{2+2}}-\ldots \ldots . .-q_{r_{2}}<\mathrm{x}_{2}
$$

These steps are possible because $\sum \mathrm{p}_{\mathrm{n}} \& \sum \mathrm{q}_{\mathrm{n}}$ are both divergent series of positive terms. If the process is continued in this way,
we obtain a rearrangement $\sum \mathrm{b}_{\mathrm{n}} \& \sum \mathrm{a}_{\mathrm{n}}$

Where $\sum \mathrm{b}_{\mathrm{n}}=\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots \ldots+p_{K_{1}}-\mathrm{q}_{1}-\mathrm{q}_{2}-\ldots . .-q_{r_{1}}+p_{K_{1+1}}+p_{K_{2+2}}+\ldots \ldots .+p_{K_{2}}-q_{r_{1+1}}$

$$
\begin{equation*}
-q_{r_{2+2}}-\ldots \ldots-q_{r_{2}} \ldots \tag{3}
\end{equation*}
$$

Let $t_{n}=b_{1}+b_{2}+\ldots \ldots+b_{n}$
To prove: $\lim _{n \rightarrow \infty} \inf t_{n}=x$ and $\lim _{n \rightarrow \infty} t_{n} \sup t_{n}=y$,

Let α_{n} and β_{n} denote the partial sum of equation (3) whose last terms are $p_{K_{n}} \& q_{r_{n}}$ respectively.

Since, $\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots \ldots+p_{K_{1}}-\mathrm{q}_{1}-\mathrm{q}_{2}-\ldots . .-q_{r_{1}}+p_{K_{1+1}}+\ldots \ldots .+p_{K_{n-1}}+p_{K_{n}}>\mathrm{y}_{\mathrm{n}}$
$\therefore \mathrm{p}_{1}+\mathrm{p}_{2}+\ldots \ldots .+p_{K_{1}}-\mathrm{q}_{1}-\mathrm{q}_{2}-\ldots . .-q_{r_{1}}+p_{K_{1+1}}+\ldots \ldots .+p_{K_{n-1}} \leq \mathrm{y}_{\mathrm{n}}$

Similarly,
$\left|\beta_{\mathrm{n}^{-}} \mathrm{y}_{\mathrm{n}}\right| \leq q_{r_{n}}$
$\because \sum \mathrm{a}_{\mathrm{n}}$ is converges, $\mathrm{a}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
$\Rightarrow \mathrm{p}_{\mathrm{n}} \rightarrow 0 \& \mathrm{q}_{\mathrm{n}} \rightarrow 0 \quad$ as $\mathrm{n} \rightarrow \infty$
$\Rightarrow p_{K_{n}} \rightarrow 0 \& q_{r_{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

Now, $\Rightarrow p_{K_{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

Given $\varepsilon>0$, there exist a positive integer N_{2} such that
$\left|p_{K_{n}}\right|<\varepsilon / 2 \quad$ for all $\mathrm{n} \geq \mathrm{N}_{1}$

Again since $\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}$ as $\mathrm{n} \rightarrow \infty$

Given $\varepsilon>0$, there exist a positive integer N_{2} such that
$\left|y_{n}-\mathrm{y}\right|<\varepsilon / 2$ for all $\mathrm{n} \geq \mathrm{N}_{2}$
Let $\mathrm{N}=\max \left\{\mathrm{N}_{1}, \mathrm{~N}_{2}\right\}$, Then

$$
\begin{aligned}
\left|\alpha_{\mathrm{n}}-\mathrm{y}\right|= & \left|\alpha_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}+\mathrm{y}_{\mathrm{n}}-\mathrm{y}\right| \\
& \leq\left|\alpha_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\right|+\left|\mathrm{y}_{\mathrm{n}}-\mathrm{y}\right| \\
& \leq p_{K_{n}}+\left|\mathrm{y}_{\mathrm{n}}-\mathrm{y}\right| \\
& \leq\left|p_{K_{n}}\right|+\left|\mathrm{y}_{\mathrm{n}}-\mathrm{y}\right| \\
& \leq \varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

$\therefore\left|\alpha_{\mathrm{n}}-\mathrm{y}\right|<\varepsilon$ for all $\mathrm{n} \geq \mathrm{N}$

But ' ε ' was arbitrary, $\therefore \alpha_{n} \rightarrow \mathrm{y}$
similarly, by the same argument we can prove that $\beta_{\mathrm{n}} \rightarrow \mathrm{x}$
Finally, it is clear that no number less than ' x ' or greater than ' y ' can be sub sequential limit of the partial sum of equation (3)
$\lim _{n \rightarrow \infty} \inf \mathrm{t}_{\mathrm{n}}=\mathrm{x}$ and $\lim _{n \rightarrow \infty} t_{n} \sup \mathrm{t}_{\mathrm{n}}=\mathrm{y}$, where $\mathrm{t}_{\mathrm{n}}=\mathrm{b}_{1}+\mathrm{b}_{2}+\ldots \ldots+\mathrm{b}_{\mathrm{n}}$

Unit II
 Unit

The Riemann - Stieltjes Integral: Introduction - Notation - The definition of the Riemann -
Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann -
Stieltjes integral - Reduction to a Riemann Integral - Euler's summation formula Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper, lower integrals - Riemann's condition - Comparison theorems.

2.1. Introduction

- Finding the slope of the tangent line to a curve is studied by a limit process known as differentiation
- Finding the area of a region under a curve is studied by a limit process known as integration.
- To find the area of the region under the graph of a positive function f defined on $[\mathrm{a}, \mathrm{b}]$, we subdivide the interval $[a, b]$ into a finite number of subintervals, say n, the kth subinterval having length Δx_{k} and the sum $\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}$, where $t_{k} \in\left(x_{k-1}, x_{k}\right)$ is an approximation to the area by means of rectangles.
- If the definite integral of a continuous function f as a function of its upper limit, we write $F(x)=\int_{a}^{x} f(t) d t$.Then $F^{\prime}(x)=f(x)$.Hence differentiation and integration are in inverse operations.

Notation 2.2:

- $f, g, \alpha, \beta \rightarrow$ Real-valued functions defined bounded on $[\mathrm{a}, \mathrm{b}]$.

Definition 2.3: A partition P of $[\mathrm{a}, \mathrm{b}]$, where $\mathrm{a}<\mathrm{b}$ is a finite set $P=$ $\left\{a=x_{0}, x_{1}, x_{2}, \ldots x_{n}=b\right\}$ such that $\mathrm{a}=\mathrm{x}_{0} \leq \mathrm{x}_{1} \leq, \ldots, \leq \mathrm{x}_{\mathrm{i}-1} \leq \mathrm{x}_{\mathrm{i}} \leq$, $\ldots, \leq x_{n}=b$.

- $\Delta x_{k}=x_{k}-x_{k-1}$
- $\mathcal{p}[a, b]=$ set of all partitions of $[\mathrm{a}, \mathrm{b}]$
- A partition P^{\prime} of $[\mathrm{a}, \mathrm{b}]$ is said to be finer than (or a refinement of) if $P \subseteq p^{\prime}$
- $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$ and $\sum_{k=1}^{n} \Delta x_{k}=\alpha(b)-\alpha(a)$
- The mesh (or) norm of a partition P is the length of the largest subinterval of P. (i.e.) $\|P\|=\max _{k \in\{1,2 \ldots n\}}\left|x_{k}-x_{k-1}\right|$
- $P \subseteq P^{\prime} \Rightarrow\|P\| \geq\left\|P^{\prime}\right\|$
(ie) The refinement of a partition decreases its norm, but the converse does not necessarily.

The Definition of the Riemann-Stieltjes Integral

Definition 2.4:

Let f, α be the real-valued functions defined on the closed interval $[\mathrm{a}, \mathrm{b}]$. Let $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots x_{n}=b\right\}$
be partition of $[a, b]$ and let be a point in the subinterval $\left[x_{k-1}, x_{k}\right]$. Let $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$. Then a sum of the form $S(P, f, \alpha)=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}$
is called a Riemann-Stieltjes Sum of f with respect to α
The function f is said to be Riemann- Stieltjes Integral with respect to α on $[\mathrm{a}, \mathrm{b}]$ (i.e.) $f \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$

Their exist $A \in R$ having the following property:
For all $\varepsilon>0$, their exist a partition P_{ε} of $[\mathrm{a}, \mathrm{b}]$ such that
For all partition P finer than $P_{\varepsilon}\left(P_{\varepsilon} \subseteq P\right)$
For every choice of the points $t_{k} \epsilon\left[x_{k-1}, x_{k}\right]$, we have
$|s(p, f, \alpha)-A|<\varepsilon$
(i.e.) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}=A$

If such on $A \in R$ exists and uniquely determined, we say that the RiemannStieltjes Integral exists and write
$\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) d \alpha(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}=A$

Note 1:

The function f and α referred to as the integrand and the integrator respectively.

Note 2: Riemann Integral

When $\alpha(x)=x$ in the Riemann-Stieltjes Integral, then we get the Riemann sum of f
$S(P, f)=\sum_{k=1}^{n} f\left(t_{k}\right) \Delta x_{k}$
and $|s(p, f)-A|<\varepsilon$
Then the function f is said to be Riemann Integrable on [a, b]
(i.e.) $f \in \mathrm{R}$ and write
$\int_{a}^{b} f d x=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x_{k}=A$

Note: 3

The numerical value of $\int_{a}^{b} f(x) d \alpha(x)$ depends only on f, α, a and b and does not depend on the symbol x . This letter x is a dummy variable and may be replaced be any other convenient symbol.

Linear Properties

Theorem 2.5: [Linearity of the Integrand of R-S Integral]

If $f \in \mathrm{R}(\alpha)$ and if $g \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, then $c_{1} f+c_{2} g \in \mathrm{R}(\alpha)$
On [a, b] for any two constants c_{1} and c_{2} and we have

$$
\int_{a}^{b}\left(c_{1} f+c_{2} g\right) d \alpha=c_{1} \int_{a}^{b} f d \alpha+c_{2} \int_{a}^{b} g d \alpha
$$

Proof:

Let f, g, α be real valued function defined on $[\mathrm{a}, \mathrm{b}]$

Let $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots . x_{n}=b\right\} \in \mathfrak{p}[a, b]$
$t_{k} \in\left[x_{k-1}, x_{k}\right]$ and $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$.
Let $\varepsilon>0$ be given
Given $f \in \mathrm{R}(\alpha)$ and $g \in \mathrm{R}(\alpha)$
Let c_{1} and c_{2} be two constants
To provec $c_{1} f+c_{2} g \in \mathrm{R}(\alpha)$
and $\int_{a}^{b}\left(c_{1} f+c_{2} g\right) d \alpha=c_{1} \int_{a}^{b} f d \alpha+c_{2} \int_{a}^{b} g d \alpha$
Let $h=c_{1} f+c_{2} g$
Now $f \in \mathrm{R}(\alpha) \Rightarrow$ their exists $A \in \mathcal{R}$ such that for all $\varepsilon>0 \varepsilon_{1}=\frac{\varepsilon}{2\left|c_{1}\right|}>0$, their exists $P_{\varepsilon_{1}}$ of $[\mathrm{a}, \mathrm{b}]$ such that for all P finer than $P_{\varepsilon_{1}}$ and $t_{k} \in\left[x_{k-1}, x_{k}\right]$, we have $|S(P, f, \alpha)-A|<\varepsilon_{1}$ and
$A=\int_{a}^{b} f d \alpha$
Also $g \in \mathrm{R}(\alpha) \Rightarrow$ their exists $B \in \mathcal{R}$ such that for all $\varepsilon_{1}=\frac{\varepsilon}{2\left|c_{2}\right|}>0$ their exists $P_{\varepsilon_{2}}$ of $[\mathrm{a}, \mathrm{b}]$ such that for all P finer than $P_{\varepsilon_{2}}$ and $t_{k} \in\left[x_{k-1}, x_{k}\right]$, we have $|S(P, g, \alpha)-B|<\varepsilon_{2}$ and $B=\int_{a}^{b} g d \alpha$.

Let $P_{\varepsilon}=P_{\varepsilon_{1}} \cup P_{\varepsilon_{2}}$
Then $\forall P$ finer then P_{ε}, we have

$$
\begin{aligned}
& \left|S(P, h, \alpha)-\left(C_{1} A+C_{2} B\right)\right|=\left|\sum_{k=1}^{n} h\left(t_{k}\right) \Delta \alpha_{k}-\left(C_{1} A+C_{2} B\right)\right| \\
= & \left|\sum_{k=1}^{n}\left(C_{1} f+C_{2} g\right)\left(t_{k}\right) \Delta \alpha_{k}-\left(C_{1} A+C_{2} B\right)\right| \\
= & \left|\sum_{k=1}^{n}\left(C_{1} f\right)\left(t_{k}\right) \Delta \alpha_{k}-C_{1} A+\sum_{k=1}^{n}\left(C_{2} g\right)\left(t_{k}\right) \Delta \alpha_{k}-C_{2} B\right|
\end{aligned}
$$

$=\left|C_{1}\left(\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A\right)+C_{2}\left(\sum_{k=1}^{n} g\left(t_{k}\right) \Delta \alpha_{k}-B\right)\right|$
$\leq\left|C_{1}\right|\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A\right|+\left|C_{2}\right|\left|\sum_{k=1}^{n} g\left(t_{k}\right) \Delta \alpha_{k}-B\right|$
$=\left|C_{1}\right||S(P, f, \alpha)-A|+\left|C_{2}\right||S(P, g, \alpha)-B|$
$<\left|C_{1}\right| \varepsilon_{1}+\left|C_{2}\right| \varepsilon_{2}$
$=\left|C_{1}\right| \frac{\varepsilon}{2\left|C_{1}\right|}+\left|C_{2}\right| \frac{\varepsilon}{2\left|C_{2}\right|} \quad$ (by equation (1) \& (2))
$=\varepsilon$
$\therefore\left|S\left(P, C_{1} f+C_{2} g, \alpha\right)-\left(C_{1} A+C_{2} B\right)\right|<\varepsilon$
$\therefore C_{1} f+C_{2} g \in R(\alpha)$
Also, $\int_{a}^{b}\left(C_{1} f+C_{2} g\right) d \alpha=C_{1} A+C_{2} B$
$\int_{a}^{b}\left(C_{1} f+C_{2} g\right) d \alpha=C_{1} \int_{a}^{b} f d \alpha+C_{2} \int_{a}^{b} g d \alpha$

Theorem 2.6: [Linearity of the Integrator of R-S Integral]

If $f \in R(\alpha)$ and $f \in R(\beta)$ on [a,b], then $f \in R\left(C_{1} \alpha+C_{2} \beta\right)$ on [a, b] (for any two constants C_{1} and C_{2}) and we have

$$
\int_{a}^{b} f d\left(C_{1} \alpha+C_{2} \beta\right)=C_{1} \int_{a}^{b} f d \alpha+C_{2} \int_{a}^{b} f d \beta
$$

Proof:

Let f, α, β be real- valued functions defined on $[\mathrm{a}, \mathrm{b}]$
Let $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\} \in \mathfrak{p}[a, b]$
Let $t_{k} \in\left[x_{k-1}, x_{k}\right] \quad$ and $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\varepsilon>0$ be given
Given $f \in R(\alpha)$ and $f \in R(\beta)$

Let C_{1} and C_{2} be two constants.
To prove: $f \in\left(C_{1} \alpha+C_{2} \beta\right)$ and

$$
\int_{a}^{b} f d\left(C_{1} \alpha+C_{2} \beta\right)=C_{1} \int_{a}^{b} f d \alpha+C_{2} \int_{a}^{b} f d \beta
$$

Now, $f \in R(\alpha)$
$A \in \mathbb{R} \ni: \forall \varepsilon_{1}=\frac{\varepsilon}{2\left|C_{1}\right|}>0$,there exists $P_{\epsilon_{1}}$ of $[\mathrm{a}, \mathrm{b}]$ such that for all P is finer that $P_{E_{1}}$ and $t_{k} \in\left[x_{k-1}, x_{k}\right]$ we have $|\mathrm{S}(\mathrm{P}, \mathrm{f}, \alpha)-\mathrm{A}|<\varepsilon_{1}$ and $\mathrm{A}=\int_{a}^{b} f \mathrm{~d} f d \alpha$

Also, $\mathrm{f} \in R(\beta)$
$B \in \mathbb{R} \ni: \forall \varepsilon_{2}=\frac{\varepsilon}{2\left|C_{2}\right|}>0$, there exists $P_{\epsilon_{2}}$ of $[\mathrm{a}, \mathrm{b}]$ such that for all P is finer that $P_{\varepsilon_{2}}$ and $t_{k} \in\left[x_{k-1}, x_{k}\right]$ we have $|\mathrm{S}(\mathrm{P}, \mathrm{f}, \beta)-\mathrm{B}|<\varepsilon_{1}$ and $\mathrm{A}=\int_{a}^{b} f \mathrm{~d} f d \alpha--$

Let $P_{\varepsilon}=P_{\varepsilon_{1}} \cup P_{\varepsilon_{2}}$
Then for all P finer than P_{ε}, we have

$$
\begin{aligned}
& \begin{array}{l}
\mid S\left(P, f, C_{1} \alpha+\right. \\
\left.\quad C_{2} \beta\right)-\left(C_{1} A+C_{2} B\right) \mid \\
\quad=\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta\left(C_{1} \alpha+C_{2} \beta\right)_{k}-\left(C_{1} A+C_{2} B\right)\right| \\
=\left|\sum_{k=1}^{n} f\left(t_{k}\right)\left(C_{1} \Delta \alpha_{k}+C_{2} \Delta \beta_{k}\right)-\left(C_{1} A+C_{2} B\right)\right| \\
\quad=\mid C_{1}\left(\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A+C_{2}\left(\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \beta_{k}-B \mid\right.\right. \\
=\left|C_{1}\right| \sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A+C_{2} \sum_{k=1}^{n} f\left(t_{k}\right) \Delta \beta_{k}-B \mid \\
=\left|C_{1}\right||S(P, f, \alpha)-A|-\left|C_{2}\right||S(P, f, \beta)-B| \\
=\left|C_{1}\right| \varepsilon_{1}+\left|C_{2}\right| \varepsilon_{2} \quad(\text { by }(1) \text { and (2))} \\
\quad=\left|C_{1}\right| \frac{\varepsilon}{2\left|C_{1}\right|}+\left|C_{2}\right| \frac{\varepsilon}{2\left|C_{2}\right|}=\varepsilon \\
\left|S\left(P, f, C_{1} \alpha+C_{2} \beta\right)-\left(C_{1} A+C_{2} B\right)\right|<\varepsilon
\end{array}
\end{aligned}
$$

Therefore $f \in R\left(C_{1} \alpha+C_{2} \beta\right)$

$$
\text { Also } \int_{a}^{b} f d\left(C_{1} \alpha+C_{2} \beta\right)=C_{1} A+C_{2} B
$$

$$
\int_{a}^{b} f d\left(C_{1} \alpha+C_{2} \beta\right)=C_{1} \int_{a}^{b} f d \alpha+C_{2} \int_{a}^{b} f d \beta
$$

Theorem 2.7: [R-S Integrability on Subintervals]

Assume that $\mathrm{c} \epsilon(\mathrm{a}, \mathrm{b})$. If two of the three integrals in (1) exists, then the third also exists and we have $\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha=\int_{a}^{b} f d \alpha$.
(i.e.) Let f and α be functions on the interval $[\mathrm{a}, \mathrm{b}]$ and Let $\mathrm{c} \epsilon(\mathrm{a}, \mathrm{b})$. Then (a) $\int_{a}^{b} f d \alpha$ exists if both $\int_{a}^{c} f d \alpha \& \int_{c}^{b} f d \alpha$ exists
(b) $\int_{a}^{c} f d \alpha$ exists if both $\int_{a}^{b} f d \alpha \& \int_{c}^{b} f d \alpha$ exists
(c) $\int_{c}^{b} f d \alpha$ exists if both $\int_{a}^{b} f d \alpha \& \int_{a}^{c} f d \alpha$ exists.

Proof:

Assume that $\mathrm{c} \epsilon(\mathrm{a}, \mathrm{b})$.
Suppose $\int_{a}^{c} f d \alpha$ and $\int_{c}^{b} f d \alpha$ exists
To prove: $\int_{a}^{b} f d \alpha$ exists and $\int_{a}^{b} f d \alpha \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha$
Let $\mathrm{P}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots, x_{k-1}, x_{k}=c, x_{k+1}, \ldots, x_{n-1}, x_{n}=\mathrm{b}\right\}$
Be a partition on $[\mathrm{a}, \mathrm{b}]$ Let $P^{\prime}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots ., x_{k-1}, x_{k}=c\right\} \& \quad P^{\prime \prime}=\{\mathrm{c}=$ $\left.x_{k}, x_{k+1}, \ldots, x_{n-1}, x_{n}=\mathrm{b}\right\}$ be the partitions of $[\mathrm{a}, \mathrm{c}]$ and $[\mathrm{c}, \mathrm{b}]$ respectively.

The Riemann - Stieltjes sums for these partitions are connected by the equation.
$\left|S(P, f, \alpha)=S\left(P^{\prime}, f, \alpha\right)+S\left(P^{\prime \prime}, f, \alpha\right)\right|---(1)$
Let $\varepsilon>0$ be given
Let $\int_{a}^{c} f d \alpha=\mathrm{A}$ and $\int_{c}^{b} f d \alpha=\mathrm{B}, \mathrm{A}, \mathrm{B} \in \mathbb{R}$
Now, $\int_{a}^{c} f d \alpha=\mathrm{A} \int_{c}^{b} f d \alpha=\mathrm{B} \quad, \mathrm{A}, \mathrm{B} \in \mathbb{R}$

Now, $\int_{a}^{c} f d \alpha=\mathrm{A}$
$\Rightarrow \varepsilon_{1}=\frac{\varepsilon}{2}>0$, there exists $P_{\varepsilon_{1}}$ of $[a, c]$ such that
For all P^{\prime} finer than $P_{\varepsilon_{1}}$ we have
$\left|S\left(P^{\prime}, f, \alpha\right)-A\right|<\varepsilon_{1}$ and $A=\int_{a}^{c} f d \alpha$
Also $\int_{c}^{b} f d \alpha=\mathrm{B}$
$\Rightarrow \varepsilon_{2}=\frac{\varepsilon}{2}>0$, there exists $P_{\varepsilon_{2}}$ of $[c, b]$ such that
For all P^{\prime} finer than $P_{\varepsilon_{2}}$ we have
$\left|S\left(P^{\prime \prime}, f, \alpha\right)-A\right|<\varepsilon_{2}$ and $B=\int_{c}^{b} f d \alpha$
Let $P_{\varepsilon}=P_{\varepsilon_{1}} \cup P_{\varepsilon_{2}}$
Then for all P finer than P_{ε} we have
$|S(P, f, \alpha)-(A+B)|=\left|S\left(P^{\prime}, f, \alpha\right)+S\left(P^{\prime \prime}, f, \alpha\right)-(A+B)\right|$
(by equation (1))
$=\left|\left(S\left(P^{\prime}, f, \alpha\right)-A\right)+\left(S\left(P^{\prime \prime}, f, \alpha\right)-B\right)\right|$
$\leq|S(P, f, \alpha)-A|+\left|S\left(P^{\prime \prime}, f, \alpha\right)-B\right|$
$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$
$=\varepsilon$
$|S(P, f, \alpha)-(A+B)|<\varepsilon$
$\int_{a}^{b} f d \alpha$ exists
Also $\int_{a}^{b} f d \alpha=A+B$
$\Rightarrow \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha=\int_{a}^{b} f d \alpha$.
Similarly, we can prove the remaining two cases.

Note:

Using mathematical induction, we can prove the above result for a decomposition of $[\mathrm{a}, \mathrm{b}]$ into a finite number of subintervals.

Definition 2.8.

If $\mathrm{a}<\mathrm{b}$, we define $\int_{b}^{a} f d \alpha=-\int_{a}^{b} f d \alpha$ whenever $\int_{a}^{b} f d \alpha$ exists.
We also define $\int_{a}^{a} f d \alpha=0$
Then the equation
$\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha=\int_{a}^{b} f d \alpha$ becomes
$\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha=-\int_{a}^{b} f d \alpha$
$\int_{a}^{b} f d \alpha+\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha=0$

Integration by parts

Note:

A remarkable connection exists between the integrand and the integrator in the R-S integral.

The existence of $\int_{a}^{b} f d \alpha$ implies the existence of $\int_{a}^{b} \alpha d f$ and the converse is also true.

Theorem 2.9:

[The formula of integration by parts of R-S Integral]
If $f \in R(f)$ on [a,b] , then $\alpha \in R(f)$ on [a,b] and we have

$$
\int_{a}^{b} f(x) d \alpha(x)+\int_{a}^{b} \alpha(x) d f(x)=f(b) \alpha(b)-f(a) \alpha(a)
$$

Proof:

Let f and α be real valued functions on $[\mathrm{a}, \mathrm{b}]$

Let $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\} \in \mathcal{P}[a, b]$
Let $t_{k} \in\left[x_{k-1}, x_{k}\right]$ and $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\varepsilon>0$ be given $f \in R(\alpha)$
To Prove: $\alpha \in R(f)$ and $\int_{a}^{b} f d \alpha+\int_{a}^{b} \alpha d f=f(b) \alpha(b)-f(a) \alpha(a)$
Now, $f \in R(\alpha)$
\Rightarrow their exists $\mathrm{A} \in \mathbb{R}$ such that for all $\varepsilon>0 P_{\varepsilon}$ of $[\mathrm{a}, \mathrm{b}]$ such that
$\forall \mathrm{p}$ finer than $P_{\varepsilon} t_{k} \in\left[x_{k-1}, x_{k}\right]$, we have
$|S(P, f, \alpha)-B|<\varepsilon$ and $B=\int_{a}^{b} f d \alpha$
Let $\mathrm{A}=f(b) \alpha(b)-f(a) \alpha(a)$
$\Rightarrow A=\sum_{k=1}^{n} f\left(x_{k}\right) \alpha\left(x_{k}\right)-\sum_{k=1}^{n} f\left(x_{k-1}\right) \alpha\left(x_{k-1}\right)$
$\forall \mathrm{p}$ finer than P_{ε}, we have
$|S(P, \alpha, f)-(A-B)|=\left|\sum_{k=1}^{n} \alpha\left(t_{k}\right) \Delta f_{k}-A+B\right|$
$\leq\left|\sum_{k=1}^{n} \alpha\left(x_{k}\right) \Delta f_{k}-A+B\right|$
$\left(\therefore t_{k} \in\left[x_{k-1}, x_{k}\right]\right)$
$\leq \mid \sum_{k=1}^{n} \alpha\left(x_{k}\right)\left[f\left(x_{k}\right)-f\left(x_{k-1}\right)\right]-\sum_{k=1}^{n} f\left(x_{k}\right) \alpha\left(x_{k}\right)+$

$$
\sum_{k=1}^{n} f\left(x_{k-1}\right) \alpha\left(x_{k-1}\right) \mid+\mathrm{B}
$$

$\leq \mid \sum_{k=1}^{n} \alpha\left(x_{k}\right) f\left(x_{k}\right)-\sum_{k=1}^{n} \alpha\left(x_{k}\right) f\left(x_{k-1}\right)-\quad \sum_{k=1}^{n} f\left(x_{k}\right) \alpha\left(x_{k}\right)+$
$\sum_{k=1}^{n} f\left(x_{k-1}\right) \alpha\left(x_{k-1}\right) \mid+\mathrm{B}$
$\leq \mid \sum_{k=1}^{n} f\left(x_{k-1}\right)\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)-B \mid\right.$
$\leq\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-B\right|$
$=|S(P, f, \alpha)-B|$
$<\varepsilon$
$\therefore|S(P, \alpha, f)-(A-B)|<\varepsilon$
(i.e.) $\alpha \in R(f)$ and $\int_{a}^{b} \alpha d f=A-B$
$\Rightarrow \int_{a}^{b} \alpha d f=f(b) \alpha(b)-f(a) \alpha(a)-\int_{a}^{b} f d \alpha$
$\Rightarrow \int_{a}^{b} f d \alpha+\int_{a}^{b} \alpha d f=f(b) \alpha(b)-f(a) \alpha(a)$

Change of Variable in a Riemann-Stieltjes Integral

Theorem 2.10:

Let $f \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ and let g be a strictly monotonic continuous function defined on an interval S having endpoints c and d. Assume that $\mathrm{a}=\mathrm{g}(\mathrm{c})$ and $\mathrm{b}=\mathrm{g}(\mathrm{d})$. Let h and β be the composite functions defined as follows: $h(x)=$ $f[g(x)], \beta(x)=\alpha[g(x)]$ if $x \in S$

Then $h \in \mathrm{R}(\beta)$ on S and we have
$\int_{a}^{b} f d \alpha=\int_{c}^{d} h d \beta$
(i.e.) $\int_{g(c)}^{g(d)} f(t) d \alpha(t)=\int_{c}^{d} f[g(x)] d\{\alpha[g(x)]\}$

Proof:

Let f and α be real valued function defined on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{p}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots ., x_{n}=\mathrm{b}\right\} \in \mathcal{p}[\mathrm{a}, \mathrm{b}]$

Let $t_{k} \in\left[x_{k-1}, x_{k}\right] \Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\epsilon>0$ be given
Let g be a strictly monotonic function on [c, d]
Assume that $a=g(c)$ and $b=g(d)$
Let h and β be the composite functions \ni
$h(x)=f[g(x)], \beta(x)=\alpha[g(x)]$ if $x \in[c, d]$
To prove: $h \in \mathrm{R}(\beta)$ on $[c, d]$ and $\int_{a}^{b} f d \alpha=\int_{c}^{d} h d \beta$
Now, $f \in \mathrm{R}(\alpha)$
\Rightarrow their exist $A \in \mathrm{R} \ni \forall \epsilon>0$ their exist P_{ε} of $[\mathrm{a}, \mathrm{b}]$ such that
$\forall \mathrm{p}$ finer than P_{ε} and $t_{k} \in\left[x_{k-1}, x_{k}\right]$, we have
$|S(P, f, \alpha)-A|<\varepsilon$ and $A=\int_{a}^{b} f d \alpha$
Also assume that
g is strictly monotonic increasing and continuous on [c, d]
$\Rightarrow g$ is 1-1 and onto from [c, d] and $[\mathrm{a}, \mathrm{b}]$
and g^{-1} exists and g^{-1} is also strictly increasing and continuous on [a,b]
$\therefore \forall$ partition $p^{\prime}\left\{c=y_{0}, y_{1}, \ldots . ., y_{n}=d\right\}$ of $[\mathrm{c}, \mathrm{d}]$
Their exists one and only partition $\mathrm{p}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots . . x_{n}=\mathrm{b}\right\}$ of $[\mathrm{a}, \mathrm{b}]$ with $x_{k} \in g\left(x_{k}\right)$
(i.e.) $p=g\left(p^{\prime}\right)$
$\Rightarrow p^{\prime}=g^{-1}(p)$
Let $p^{\prime}{ }_{\varepsilon}=g^{-1}\left(P_{\varepsilon}\right)$ be the corresponding partition of $[\mathrm{c}, \mathrm{d}]$
Let $u_{k} \in\left[y_{k-1}, y_{k}\right]$ and $\Delta \beta_{k}=\alpha\left(\beta_{k}\right)-\alpha\left(\beta_{k-1}\right)$
also $t_{k}=g\left(u_{k}\right)$ and $x_{k}=g\left(y_{k}\right)$
Now, \forall partition p^{\prime} finer than p_{ε}^{\prime}, we have
$\left|S\left(p^{\prime}, h, \beta\right)-A\right|=\left|\sum_{k=1}^{n} h\left(u_{k}\right) \Delta \beta_{k}-A\right|$
$=\left|\sum_{k=1}^{n} h\left(u_{k}\right)\left[\beta\left(y_{k}\right)-\beta\left(y_{k-1}\right)\right]-A\right|$
$=\mid \sum_{k=1}^{n} \mathrm{f}\left(\mathrm{g}\left(u_{k}\right)\right)\left[\alpha\left(g\left(y_{k}\right)\right)-\alpha\left(g\left(y_{k-1}\right)\right]-A \mid\right.$
$\leq\left|\sum_{k=1}^{n} f\left(x_{k}\right)\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right]-A\right|$
$\leq\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A\right|$
$=|S(P, f, \alpha)-A|$
$<\varepsilon \quad$ (by equation (2))
$\left|S\left(p^{\prime}, h, \beta\right)-A\right|<\varepsilon$
$\therefore h \in \mathrm{R}(\beta)$ and $\int_{c}^{d} h d \beta=A$
$\Rightarrow \int_{c}^{d} h d \beta=\int_{a}^{b} f d \alpha$
(i.e.) $\int_{a}^{b} f d \alpha=\int_{c}^{d} h d \beta \Rightarrow \int_{a}^{b} f(t) d \alpha(t)=\int_{c}^{d} h(x) d \beta(x)$
$\Rightarrow \int_{g(c)}^{g(d)} f(t) d \alpha(t)=\int_{c}^{d} f[g(x)] d\{\alpha[g(x)]\}$

Note:

When $\alpha(x)=x$, the above Theorem applies to Riemann integrals.

Reduction to a Riemann Integral

Theorem 2.11:

Assume $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ and assume that α has a continuous derivative α^{\prime} on $[\mathrm{a}, \mathrm{b}]$. Then the Riemann integral $\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$ exists and we have

$$
\int_{a}^{b} f(x) d \alpha(x)=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x
$$

Proof:

Let $\mathrm{f} \& \mathrm{~d}$ be real-valued functions defined on $[\mathrm{a}, \mathrm{b}]$

Let $\mathrm{p}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots . ., x_{n}=\mathrm{b}\right\} \in \mathrm{P}[\mathrm{a}, \mathrm{b}]$ Let $t_{k} \in\left[x_{k-1}, x_{k}\right]$
$\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$

Let $\epsilon>0$ be given

Given $\mathrm{f} \in \mathrm{R}(\alpha)$ and α has a continuous derivative α^{\prime} on [a,b].

To Prove: $\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$ exists and $\int_{a}^{b} f(x) d \alpha(x)=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
Now, $\mathrm{f} \in \mathrm{R}(\alpha)=>\exists A \in R \ni \forall \epsilon_{1}=\epsilon_{2}>0 \exists P_{\epsilon}$ of $[\mathrm{a}, \mathrm{b}] \ni$
$\forall P$ finer than $P_{\epsilon_{1}}$ and $t_{k} \in\left[x_{k-1}, x_{k}\right]$,we have
$|\mathrm{S}(\mathrm{P}, \mathrm{f} \alpha)-A|<\epsilon$ and $A=\int_{a}^{b} f d \alpha$

Also, Given α ' exists and is continuous on $[a, b]$
By-Mean-Value Theorem, $\exists v_{k} \in\left[x_{k-1}, x_{k}\right]$

$$
\begin{gather*}
\alpha\left(x_{k}\right)-\alpha^{\prime}\left(x_{k-1}\right)=\alpha^{\prime}\left(v_{k}\right)\left(x_{k}-x_{k-1}\right) \\
\Delta \alpha_{k}=\alpha^{\prime}\left(v_{k}\right) \cdot \Delta x_{k} \\
\Rightarrow \Delta \alpha_{k}=\alpha^{\prime}\left(v_{k}\right) \cdot \Delta x_{k} \ldots \ldots \ldots(3) \tag{3}
\end{gather*}
$$

α^{\prime} is continuous on $[a, b]$
$\Rightarrow \alpha^{\prime}$ is unisormly_ontinuous on $[0, b]$
\Rightarrow given $\varepsilon_{2}>0 \exists, \delta>0$, \ni
$|x-y|<\delta \Rightarrow\left|\alpha^{\prime}(x)-\alpha^{\prime}(y)\right|<\varepsilon_{2}=\frac{\varepsilon}{2 \mathrm{M}(b-\mathrm{a})}$

If we take a partition $P_{\varepsilon_{2}}$ with norm $\left\|P_{\varepsilon_{2}}\right\|<\delta$,
\& partition P finer than $P_{\varepsilon_{2}}$, we have
$\left|\alpha^{\prime}\left(t_{k}\right)-\alpha^{\prime}\left(v_{k}\right)\right|<\varepsilon_{2}=\frac{\varepsilon}{2 M(b-a)}$.

Let $P_{\varepsilon}=P \varepsilon_{1} \cup P_{\varepsilon_{2}}$

Then $\forall P$ finer than P_{ε} we have
$\left|S\left(P, f \alpha^{\prime}\right)-A\right|=\left|S\left(P, f \alpha^{\prime}\right)-S(P, f, \alpha)+S(P, f, \alpha)-A\right|$
$\leqslant\left|S\left(P, f \alpha^{\prime}\right)-S(P, f, A)\right|+|S(P, f, \alpha)-A|$
$=\left|\sum_{k=1}^{n}\left(f \alpha^{\prime}\right)\left(t_{k}\right) \cdot \Delta x_{k}-\sum_{k=1}^{n} f\left(t_{k}\right) \cdot \Delta \alpha_{k}\right|+,|S(\mathrm{P}, \mathrm{f}, \alpha)-A|$
$=\left|\sum_{k=1}^{n} f\left(t_{k}\right) \alpha^{\prime}\left(t_{k}\right) \cdot \Delta x_{k}-\sum_{k=1}^{n} f\left(t_{k}\right) \alpha^{\prime}\left(v_{k}\right) \Delta x_{k}\right|+|S(\mathrm{P}, \mathrm{f}, \alpha)-\mathrm{A}|$
(by equation (3))
$=\left|\sum_{k=1}^{n} f\left(t_{k}\right)\left[\alpha^{\prime}\left(t_{k}\right)-\alpha^{\prime}\left(v_{k}\right)\right] \Delta x_{k}\right|+|S(\mathrm{P}, \mathrm{f}, \alpha-A)|$
$<\left|\sum_{k=1}^{n} M \frac{\varepsilon}{2(b-a)} \cdot \Delta x_{k}\right|+\frac{\varepsilon}{2} \quad$ (by equation 1,2 and 4)
$=\frac{\varepsilon}{2(b-a)}\left|\sum_{k=1}^{n} \Delta x_{k}\right|+\frac{\varepsilon}{2}$
$=\frac{\varepsilon}{2(b-a)}(b-a)+\frac{\varepsilon}{2}$
$=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$
$=\varepsilon$
(i)| $S\left(P, f \alpha^{\prime}\right)-A \mid<\varepsilon$.
$\Rightarrow \int_{a}^{b} f(x) \alpha^{\prime}(x) d x$ exists and
$\int_{\mathrm{a}}^{b} f(x) \cdot \alpha^{\prime}(x) d x=A$
(i.e.), $\int_{a}^{a} f(x) \alpha^{\prime}(x) d x=\int_{a}^{b} f d \alpha$
(i.e.), $\int_{a}^{b} f(x) d \alpha(x)=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$,

Step Functions as Integrators

Note:

- If ' α ' is constant on $[a, b]$, then the Integral $\int_{a}^{b} f d \alpha$ exists and has value 0 (i.e.) $\int_{a}^{b} f d \alpha=0(\because s(P, f, \alpha)=0)$
- If ' α ' is constant except for a jump discontinuity at one point, then the integral $\int_{a}^{b} f d \alpha$ need not exist;
- If $\int_{a}^{b} f d \alpha$ does exist, its value need not be zero.

Theorem 2.12:

Given a $a<c b$. Define α on $[a, b]$ as follows:

The values $\alpha(a), \alpha(c), \alpha(b)$ are arbitrary;
$\alpha(x)=\alpha(a)$ if $a \leq x<c$ and $\alpha(x)=\alpha(b)$ if $c \leq x<b$

Let ' f ' be defined on $[\mathrm{a}, b]$ in such a way that at least one of the functions ' f ' or ' α ' is continuous from the left at ' c ' and at least one is continuous from the fight at ' c '. Then $f \in$ $R(\alpha)$ on [a b], and we have
$\int f d \alpha=f(0)[\alpha(+)-\alpha(-)]$

Proof:

Given $a<c<b$

Let $f \& \alpha$ be real-valued functions defined on $[a, b]$ Define ' α ' on $[a, b]$ as follows:

$$
\alpha(x)=\left\{\begin{array}{ll}
\alpha(a) & \text { if } a \leq x<c \tag{1}\\
\alpha(c) & \text { if } x=c \\
\alpha(b) & \text { if } c<x \leq b
\end{array} .\right.
$$

where $\alpha(a), \alpha(c), \alpha(b)$ are arbitrary.

Let $P=\left\{a=x_{0}, x_{1}, \ldots, x_{k-1}, x_{k}, \ldots ; x_{n}^{b}\right\} \in P[a, b]$

Let $t_{k} \in\left[x_{k-1}, x_{k}\right] \& \Delta d_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $c \in\left[t_{k-1}, t_{k}\right]$

Let $\varepsilon>0$ be given

Given atleast one of the functions ' f ' or ' α ' is continuous from the left at ' c ' and at least one is continuous from the right at ' C '.

To prove: $f \in R(\alpha) \& \int_{a}^{f d \alpha}=f(c)[\alpha(c+)-\alpha(c-1)]$

Consider the corresponding Riemann-Stieltjes sum with respect to p :

$$
\begin{aligned}
= & s\left(P_{2}, \alpha\right)=\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k} \\
& \Rightarrow s\left(p_{2}, f, \alpha\right)=\sum_{k=1}^{n} f\left(t_{k}\right)\left[\alpha\left(x_{k}\right)=\alpha\left(x_{k-1}\right)\right] \\
& =f\left(t_{1}\right)\left[\alpha\left(x_{1}\right)=\alpha\left(x_{0}\right)\right]+f\left(t_{2}\right)\left[\alpha\left(x_{2}\right)-\alpha\left(x_{1}\right)\right]+\cdots+f\left(t_{k-1}\right) \\
& {\left[\alpha\left(x_{k-1}\right)=\alpha\left(x_{k-2}\right)\right]+f\left(t_{k}\right)\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k}\right)+\cdots+f\left(t_{n}\right)\left[\alpha\left(x_{n}\right)-\alpha\left(x_{n-1}\right)\right]\right.} \\
& =f(t)[\alpha(a)-\alpha(a)]+f\left(t_{2}\right)\left[\alpha(a)-\alpha(a)+\cdots+f\left(t_{k-1}\right)[\alpha(c)-\alpha(a)]+f\left(t_{k}\right)\right. \\
& {[\alpha(b)=\alpha(c)]+\cdots+f\left(t_{n}\right)[\alpha(b)-a(b)] }
\end{aligned}
$$

$\therefore S(R, f, \alpha)=f\left(t_{k-1}\right)[\alpha(c)-\alpha(c-1)]+f\left(t_{k}\right)[\alpha(c+)-\alpha(c)]$
Let $\Delta=S(p, f, \alpha)-f(C) \cdot[\alpha(C+)-\alpha(C-)]$
Now,

$$
\begin{align*}
& |\Delta|=\mid s(p, f, \alpha)-f(c) \cdot[\alpha(c+)-\alpha(c-)] \\
& =\mid f\left(t_{k-1}\right)[\alpha(c)-\alpha(c-)]+f\left(t_{k}\right)[\alpha(c+)-\alpha(c)]-f(c)[\alpha(c)-\alpha(c-)] \\
& \quad \quad-f(c)[\alpha(c+)-\alpha(c-)] \mid \\
& =\left|\left[f\left(t_{k-1}\right)-f(c)\right] \cdot[\alpha(c)-\alpha(c-)]+\left[f\left(t_{k}\right)-f(c)\right][\alpha(c+)-\alpha(c)]\right| \\
& \therefore|\Delta| \leqslant\left|f\left(t_{k-1}\right)-f(\mathrm{c})\right| \cdot|\alpha(c)-\alpha(c-)|+\left|f\left(t_{k}\right)-f(\mathrm{c})\right||\alpha(c+)-\alpha(c)| . \tag{2}
\end{align*}
$$

Case (i) ' f ' is continuous on both sides at ' c '.

$$
\begin{aligned}
& \therefore \text { Given } \varepsilon>0, \exists \delta>0 \Rightarrow \text { : } \\
& \|P\|<\delta \Rightarrow\left|f\left(t_{k-1}\right)-f(c)\right|<\varepsilon \text { and }\left|f\left(t_{k}\right)-f(c)\right|<\varepsilon \\
& :|\Delta| \leqslant \varepsilon \cdot|\alpha(c)-\alpha(c-)|+\varepsilon \cdot|\alpha(c+)-\alpha(c)|
\end{aligned}
$$

This inequality holds whether or not ' f ' is continuous at ' c '. case (ii) ' r ' is discontinuous on both sides at ' c '
$\Rightarrow \alpha^{\prime}$ is continuous at 'e on both sides at ' C '
$\Rightarrow \alpha^{\prime}(c)=\alpha(C)=\alpha(C t)$

We get, $|\Delta|=0$

Case(iii) ' f ' is continuous from left $\&{ }^{\prime} f$ ' is discontinuous from the right it $c \Rightarrow$ ' α ' is continuous from the right at ' c '
$\Rightarrow \alpha(c)=\alpha(c t)$
\therefore we get, $|\Delta| \leqslant \varepsilon|\alpha(c)-\alpha(c-)|$

Case (iv) ' f ' is continuous from the right of
' f ' is discontinuous from the left at ' C '
$\Rightarrow^{\prime} \alpha^{\prime}$ is continuous from the left at ${ }^{\prime} C^{\prime}$
$\Rightarrow \alpha(0)=\alpha(c-)$
\therefore we get, $|\Delta| \leqslant \varepsilon \cdot|\alpha(c+)-\alpha(c)|$

From the above four cases; we get $f \in R(\alpha)$

$$
\& \int_{a}^{b} f d \alpha=f(0)[\alpha(c+)-\alpha(c-)]
$$

Note:

The value of a Riemann - stieltjes integral can be altered by changing the value of ' f ' at a single point.

Example 2.13:

This example shows that the existence of the integral k can also be affected by a change of the value of ' f ' at a single point.

Let $\alpha(x)=\left\{\begin{aligned} 0, & \text { if } x \neq 0 \\ -1, & \text { if } x=0\end{aligned}\right.$
$f(x)=1$ if $\quad-1 \leq x \leq 1$
by Theorem 2.12 we get $\int_{-1}^{1} f d \alpha=f(0)[\alpha(0+)-\alpha(0-)$

$$
=1 .[0-0]=0
$$

$\int_{-1}^{1} f d \alpha=0$, If we re-define ' f ' so that
$f(x)= \begin{cases}1, & \text { if } x \neq 0 \\ 2, & \text { if } x=0\end{cases}$

Then

$$
\begin{aligned}
\mathrm{S}(\mathrm{p}, \mathrm{f}, \alpha) & =f\left(t_{k-1}\right)\left[\alpha(0)-\alpha\left(x_{k-1}\right)\right]+f\left(t_{k}\right)\left[\alpha\left(x_{k}\right)-\alpha(0)\right] \\
& =f\left(t_{k-1}\right)[-1-0]+f\left(t_{k}\right)[0-(-1)]
\end{aligned}
$$

$\mathrm{S}(\mathrm{p}, \mathrm{f}, \alpha)=f\left(t_{k-1}\right)+f\left(t_{k}\right)$

Where $x_{k-2} \leq t_{k-1} \leq 0 \leq t_{k} \leq x_{k}$

The value of this sum is 0,1 (or) -1 , depending on $\int_{-1}^{1} f d \alpha$ does not exist.

Note:

In the Riemann integral $\int_{a}^{b} f(x) d x$; the values of ' f ' can be changed at a finite numbers of points without affecting either the existence or the value of the integral.

To prove this, consider $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}0 \text { if } x \in[a, b] \backslash\{c\} \\ c \text { if } x=c\end{array}\right.$
$S(\mathrm{P}, \mathrm{f}) \leq|\mathrm{f}(\mathrm{c})| \cdot| | \mathrm{P} \|$
$\|\mathrm{p}\|$ can be made arbitrarily small,
$\int_{a}^{b} f(x) d x=0$

Reduction of a Riemann-Stieltjies integral to a finite sum:

Definition 2.14:

Let ' f ' be defined on a closed interval $[a, b]$. If $(f(c)-f(c-))$ is exist at some interior point ' C ' then
(a) If $f(c)-f(c-)$ is called the left hand jump of ' f^{\prime} at ' c '.
(b) $f(c+)-f(c)$ is called the right hand jump of ' f ' at ' C '.
(c) $f(c)-f(c)$ is called the Jump of ' f ' at ' c '. If any one of the these three numbers is different from ' 0 '. then ' c ' is called a jump discontinuity of "f."

Definition 2.15: [Step Function]

A function ' α ' defined in $[a, b]$. is called a Step function if there exists a partition $a=x_{1}<$ $x_{2}<\cdots<x_{n}=b:$
' α ' is constant on each open sub interval $\left(x_{k-1}, x_{k}\right)$.

Note: Jump at $x_{k}=\alpha_{k}=\alpha\left(x_{k}+\right)-\alpha\left(x_{k}-\right), 1<k<n$

- Jump at $x_{1}=\alpha_{1}=\alpha\left(x_{1}+\right)-\alpha\left(x_{1}\right)$
- Jump at $x_{n}=\alpha_{0}=\alpha\left(x_{n}\right)-\alpha\left(x_{n}-\right)$

Example: $\alpha(x)=\left\{\begin{array}{cl}-0.5, & -1<x<0 \\ 1, & 0<x<1 \\ 1.5, & 1<x<2 \\ 2.5, & 2<x<3\end{array}\right.$

Theorem 2.16: [Reduction of a Riemann-Stieltjes Integral to a finite sum]

Let α be a step function defined on $[a, b]$ with jump α_{k} at x_{k}, where $x_{1}, x_{2}, \ldots, x_{n}$ are as described in Definition 2.15. Let ' f ' be defined on $[a, b]$ in such a way that not both ' f ' and ' α^{\prime} are discontinuous from the right or from the left at each x_{k} then $\int_{a}^{b} f d \alpha$ exists and we have $\int_{a}^{b} f(x) d \alpha(x)=\sum_{k=1}^{n} f\left(x_{k}\right) \alpha_{k}$.

Proof:

Let ' f be a real -valued function on $[a, b]$
let ' α ' be a step function on $[a, b]$
$\Rightarrow \exists$ a partition $P=\left\{a=x_{1}, x_{2}, \ldots, x_{n}=b\right\}$
where $a=x_{1}<x_{2}<\cdots<x_{n}=b$;
Their exist ' α ' is constant on each $\left(x_{k-1}, x_{k}\right)$.
Let the Jump at x_{k} be $\alpha_{k}=\alpha\left(x_{k}+\right)-\alpha\left(x_{k}-\right)$
To prove: $\int_{a}^{b} f d \alpha$ exists and $\int_{a}^{b} f d \alpha=\sum_{k=1}^{n} f\left(x_{k}\right) \cdot \alpha_{k}$
Let $t_{k} \leq x_{k} \leq t_{k+1}$

Given not both ' f ' \& ' α ' are discontinuous from right or from left at each ' x_{k}^{\prime}

By Theorem2.7,

$$
\begin{align*}
& \int_{a}^{b} f d \alpha=\int_{t_{1}}^{t_{2}} f d \alpha+\int_{t_{2}}^{t_{3}} f d \alpha+\cdots+\int_{t_{k}}^{t_{k+1}} f d \alpha+\cdots+\int_{t_{0}}^{t_{n+1}} f d \alpha \\
& \Rightarrow \int_{a}^{b} f d \alpha=\sum_{k=1}^{n} \int_{t_{k}}^{t_{k+1}} f d \alpha \ldots \ldots \ldots \text { (2) } \tag{2}
\end{align*}
$$

Also by Theorem 2.12,

$$
\int_{t_{k}}^{t_{k+1}} f d \alpha=f\left(x_{k}\right)\left[\alpha\left(x_{k} t\right)-\alpha\left(x_{k}-2\right)\right]
$$

where $t_{k} \leqslant x_{k} \leqslant t_{k+1}, k=1,2, \ldots, n$

$$
\begin{aligned}
\therefore(1) & \Rightarrow \int_{a}^{b} f d \alpha=\sum_{k=1}^{n} f\left(x_{k}\right)\left[\alpha\left(x_{k}+\right)-\alpha\left(x_{k}-\right)\right] \\
& \Rightarrow \int_{a}^{b} f d \alpha=\sum_{k=1}^{n} f\left(x_{k}\right) \alpha_{k}[b y 1]
\end{aligned}
$$

Definition 2.17: (Greatest Integer Function)

- one of the simplest step functions is the greatest-integer function
- Its value at ' x ' is the greatest integer which is less than or equal to ' x ' and is denoted by $[x]$
- Thus $[\mathrm{x}]$ is the unique integer satisfying the inequalities

$$
[x] \leq x<[x]+1
$$

- The graph of the greatest integer function is gn below:
- For ex, $[2 \cdot 4]=2 ;[\pi]=3 ;[-4 \cdot 2]=-5$.

Theorem 2.18:

Every finite sum of real numbers can be written as a Riemann-Stieltjes. integral. In fact, given a sum $\sum_{k=1}^{n} a_{k}$, define ' f ' on $[0, \mathrm{n}]$ as follows:
$f(x)=a_{k}$ if $k-1<x \leqslant k(k=1,2, \ldots, n) ; f(0)=0$

Then $\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} f(k)=\int_{0}^{n} f(x) d[x]$,
where $[x]$ is the greatest integer $\leq x$.

Proof:

Let the finite sum of real numbers be $\sum_{k=1}^{n} a_{k}$
Define $f:[0, \mathrm{n}] \rightarrow \mathbb{R}$ by $f(x)= \begin{cases}0, & x=0 \\ a_{k}, & k-1<x \leq k, k=1,2, \ldots, n .\end{cases}$
(i.e.), $f(x)= \begin{cases}0 & , x=0 \\ a_{1}, & 0<x \leq 1 \\ \dot{a}_{n-1} & n-n<x \leqslant n-1 \\ a_{n}, & n-1<x \leqslant n\end{cases}$

Define $\alpha:[0, \mathrm{n}] \rightarrow \mathbb{R}$ by $\alpha(x)=[x]$, where.
$[x]$ is the greatest integer $\leqslant x$
(i.e.), $\alpha(x)= \begin{cases}0 & 0 \leq x<1 \\ 1 & 1 \leq x<2 \\ \vdots & \\ \vdots & \\ n-2 & n-2 \leq x<n-1 \\ n-1 & n-1 \leq x<n\end{cases}$

To Prove: $\int_{0}^{n} f(x) d[x]=\sum_{k=1}^{n} a_{k} \mathrm{x}=\mathrm{n}$ let partition of $[0, \mathrm{n}]=\{0,1,2, \ldots, \mathrm{n}\}$ and jump at k , $\alpha_{k}=\alpha(k+)-\alpha(k-)$

From equation (1) and (2) we get,
' f ' is continuous from the left at each integer $k=1,2, \ldots, n$ and ' α ' is continuous from the right and having jump ' I ' at each integer $k=1,2 \ldots, n$.

By Theorem 2.16, $\int_{0}^{n} f d \alpha$ exists
and $\int_{0}^{n} f(x) d \alpha(x)=\sum_{k=1}^{n} f\left(x_{k}\right) \alpha_{k}$
$\Rightarrow \int_{0}^{n} f(x) d[x]=\sum_{k=1}^{n} f(k)(\alpha(k+)-\alpha(k-))$
$=\sum_{k=1}^{n} a_{k}([k+]-[k-])$
$=\sum_{k=1}^{n} a_{k}((\mathrm{k})=(k-1))$
$\int_{0}^{n} f(x) d[x]=\sum_{k=1}^{n} a_{k}$

Euler's Summation Formula

Note:

Euler's summation formula relates the integral of a function over an interval $[a, b]$ with the sum of the function values at the integers in $[a, b]$

It also used to approximate integrals by sums or conversely, to estimate the values of certain sums by means of integrals.

Theorem 2.19: [Euler's Summation Formula]

We have has a continuous derivative f^{\prime} on $[a, b]$, then
$\sum_{a<n \leqslant b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)((x)) d x+f(a)((a))-f(b)((b))$,
where $((\mathrm{x}))=\mathrm{x}-[\mathrm{x}]$. When $\mathrm{a}+\mathrm{b}$ are integers, this becomes
$\sum_{n=a}^{b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)\left(x-[x]-\frac{1}{2}\right) d x+\frac{f(a)+f(b)}{2}$

Proof:

Given, ' f ' has a continuous derivative f^{\prime} on $[\mathrm{a}, \mathrm{b}]$

By Theorem 2.10, the integration by parts of $\mathrm{R}-\mathrm{S}$ integral, we get,
$\int_{a}^{b} f(x) d \alpha(x)+\int_{a}^{b} \alpha(x) d f(x)=f(b) \alpha(b)-f(a) \alpha(a)$
Replace $\alpha(\mathrm{x}), \alpha(\mathrm{a}), \alpha(\mathrm{b})$ by $\mathrm{x}-[\mathrm{x}], \mathrm{a}-[\mathrm{a}], \mathrm{b}-[\mathrm{b}]$ respectively, we get,

$$
\begin{aligned}
& \int_{a}^{b} f(x) d(x-[x])+\int_{a}^{b}(x-[x]) d f(x)=f(b)(b-[b])-f(a)(a-[a]) \\
& \Rightarrow \int_{a}^{b} f(x) d x-\int_{a}^{b} f(x) d[x]+\int_{a}^{b}((x)) d f(x)=f(b)((b))-f(a)((a)) \\
& \left.\Rightarrow \int_{a}^{a} f(x) d x+\int_{a}^{b} f^{\prime}(x)((x)) d x+f(a)((a))-f(b)((b))\right)=\int_{a}^{b} f(x) d[x]
\end{aligned}
$$

By Theorem 2.18, we get, $\sum_{a<n \leqslant b} f(n)=\int_{a}^{b} f(x) d[x]$
$\therefore \sum_{a<n \leq b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)((x)) d x+f(a)((a))-f(b)((b))$

When a and b are integers,
$((x))=x-[x] ;((a))=a-[a]=a-a=0$
$((\mathrm{b}))=\mathrm{b}-[\mathrm{b}]=\mathrm{b}-\mathrm{b}=0$
$\therefore(1) \Rightarrow \sum_{a<n \leqslant b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)((x)) d x$
$\Rightarrow \sum_{a<n \leqslant b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)(x-[x]) d x-\frac{1}{2} \int f^{\prime}(x) d x$
$\Rightarrow \sum_{a<n \leqslant b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)-\left(x-[x]-\frac{1}{2}\right) d x+\frac{1}{2} \int_{a}^{a} f^{\prime}(x) d x$
$\Rightarrow \sum_{a<n \leqslant b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)\left(x-[x]-\frac{1}{2}\right) d x+\left[\frac{1}{2} f(x)\right]_{a}^{b}$
$\sum_{a<n \leqslant b} f(n)-\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)\left(x-[x]-\frac{1}{2}\right) d x+\frac{1}{2}[f(b)-f(a)]$
$\sum_{a<n \leqslant b} f(n)+f(a)=\int_{a}^{b} f(x) d x+\int_{a} f^{\prime}(x)\left(x-[x]-\frac{1}{2}\right) d x+\frac{1}{2} f(b)-\frac{1}{2} f(a)+f(a)$
$\Rightarrow \sum_{n=a}^{b} f(n)=\int_{a}^{b} f(x) d x+\int_{a}^{b} f^{\prime}(x)\left(x-[x]-\frac{1}{2}\right) d x+\frac{1}{2}(f(a)+f(b)$

Monotonically Increasing Integrators. Upper and Lower integrals

Note:

- When ' α ' is increasing, the differences $\Delta \alpha_{\mathrm{k}}=\alpha\left(\mathrm{x}_{\mathrm{k}}\right)-\alpha\left(\mathrm{x}_{\mathrm{k}}\right)$ which appear in the Riemann-Stieltjes sums are all non-negative. (i.e.), $\Delta \alpha \mathrm{k} \geqslant 0$ when α is increasing.
- $\quad \alpha \nearrow$ on $[a, b]$ to means that α is increasing on $[a, b]$.

Definition 2.20:

To find the area of the region under the graph of a function ' f ' we consider Riemann sums $\mathrm{S}(\mathrm{P}, \mathrm{f})=\sum \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right) \Delta \mathrm{x}_{\mathrm{k}}$ as approximation to the area by means of rectangles. Let P be a partition of $[\mathrm{a}, \mathrm{b}]$.

Then the upper and lower Riemann sums of a function ' f ' are

$$
U(P, f)=\sum M_{k}(f) \Delta x_{k}
$$

and

$$
\mathrm{L}(\mathrm{P}, \mathrm{f})=\sum \mathrm{M}_{\mathrm{k}}(\mathrm{f}) \Delta \mathrm{x}_{\mathrm{k}}
$$

where, $\mathrm{M}_{\mathrm{k}}(\mathrm{f})=\operatorname{Sup}\left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right\}$

$$
\mathrm{m}_{\mathrm{k}}(\mathrm{f})=\inf \left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right\}
$$

Our geometric intuition tells us that the upper sums are at least as big as the area we seek, whereas the lower sums cannot exceed this area.

Then the upper integral of ' f is the inf of all upper sums and the lower integral of ' f ' is the sup of all lower sums.
(i.e.) Upper integral of ${ }^{\text {' }} \mathrm{f}^{\text {c }}=\int_{\mathrm{a}}^{\bar{b}} \mathrm{f} \mathrm{dx}=\inf \{\mathrm{U}(\mathrm{P}, \mathrm{f}): \mathrm{P} \in \mathcal{p}[\mathrm{a}, \mathrm{b}]\}$

Lower integral of ${ }^{\prime} \mathrm{f}^{\prime}=\int_{\bar{a}}^{\mathrm{b}} \mathrm{fdx}=\operatorname{Sup}\{\mathrm{L}(\mathrm{P}, \mathrm{f}): \mathrm{P} \in \mathfrak{p}[\mathrm{a}, \mathrm{b}]\}$
If ' f ' is a continuous function, then $\int_{a}^{\bar{b}} f d x=\int_{\bar{a}}^{b} f d x=\int_{a}^{b} f d x$

Definition 2.21:

Let P be a partition of $[\mathrm{a}, \mathrm{b}]$ and let $\mathrm{M}_{\mathrm{k}}(\mathrm{f})=\operatorname{Sup}\left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right.$
$\mathrm{m}_{\mathrm{k}}(\mathrm{f})=\inf \left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right\}$
The numbers $U(P, f, \alpha)=\sum_{k=1}^{n} M_{k}(f) \Delta x_{k}$
and $\quad L(P, f, \alpha)=\sum_{k=1}^{n} m_{k}(f) \Delta x_{k}$ are called respectively, the upper and lower stieltjes sums of ' f ‘ with respect to ' α ' for the partition ' P '.

Note:

α increasing on $[\mathrm{a}, \mathrm{b}] \Rightarrow \mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{S}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)$
Let $\mathrm{t}_{\mathrm{k}} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]$
Then clearly, $\inf \{\mathrm{f}(\mathrm{x})\} \leq \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right) \leq \operatorname{Sup}\{\mathrm{f}(\mathrm{x})\}, \quad \mathrm{x} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]$
(i.e.), $\mathrm{m}_{\mathrm{k}}(\mathrm{f}) \leq \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right) \leq \mathrm{M}_{\mathrm{k}}(\mathrm{f})$

If α increasing on [a, b], then $\Delta \alpha_{k} \geq 0$
\therefore (1) $\Rightarrow \mathrm{m}_{\mathrm{k}}(\mathrm{f}) \Delta \alpha_{\mathrm{k}} \leq \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right) \Delta \alpha_{\mathrm{k}} \leq \mathrm{M}_{\mathrm{k}}(\mathrm{f}) \Delta \alpha_{\mathrm{k}}$
$\Rightarrow \sum \mathrm{m}_{\mathrm{k}}(\mathrm{f}) \Delta \alpha_{\mathrm{k}} \leq \sum \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right) \Delta \alpha_{\mathrm{k}} \leq \sum \mathrm{M}_{\mathrm{k}}(\mathrm{f}) \Delta \alpha_{\mathrm{k}}$
(i.e.), $\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{S}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)$

Hence if α increasing on $[\mathrm{a}, \mathrm{b}]$ then, $\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{S}(\mathrm{P}, \mathrm{f}, \alpha) \leq \mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)$

Theorem 2.22:

Assume that α increasing on $[\mathrm{a}, \mathrm{b}]$. Then:
(i)If P^{\prime} is finer than P , we have $\mathrm{U}\left(\mathrm{P}^{\prime}, \mathrm{f}, \alpha\right) \leqslant \mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha) \& \mathrm{~L}\left(\mathrm{P}^{\prime}, \mathrm{f}, \alpha\right) \geqslant \mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha)$
(ii) For any two partitions P_{1} and P_{2}, we have $\mathrm{L}\left(\mathrm{P}_{1}, \mathrm{f}, \alpha\right) \leqslant \mathrm{U}\left(\mathrm{P}_{2}, \mathrm{f}, \alpha\right)$.

Proof:

Assume that α increasing on $[\mathrm{a}, \mathrm{b}$]
(i) Let $\mathrm{P}, \mathrm{P}^{\prime} \in \mathbb{P}[\mathrm{a}, \mathrm{b}]$

Given P^{\prime} is finer thath P (i.e.), $\mathrm{P} \subset \mathrm{P}^{\prime}$.

Let $\mathrm{P}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\}$
It suffices to prove, when P^{\prime} contains exactly one more point than P , say the point ' C '.
let $P^{\prime}=\left\{a=x_{0}, x_{1}, \ldots, x_{i-1}, c, x_{i}, \ldots, x_{n}=b\right\}$
Then the upper stieltjes sums of ' f ' 'w.r.to ' α ' for P is
$\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{M}_{\mathrm{k}} \cdot(\mathrm{f}) \Delta \alpha_{\mathrm{k}}$
where $\mathrm{M}_{\mathrm{k}}(\mathrm{f})=\sup \left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right\}$
consider the upper stieltjes sum of ' f ' w.r.to ' α ' for P ' is

$$
\mathrm{U}\left(\mathrm{P}^{\prime}, \mathrm{f}, \alpha\right)=\sum_{\substack{\mathrm{K}=1 \\ \mathrm{~K} \neq 1}}^{\mathrm{n}} \mathrm{M}_{\mathrm{k}}(\mathrm{f}) \Delta \alpha_{\mathrm{k}}+\mathrm{M}^{\prime}(\mathrm{f})\left[\alpha(\mathrm{c})-\alpha\left(\mathrm{x}_{\mathrm{i}-1}\right)\right]+\mathrm{M}^{\prime \prime}(\mathrm{f})\left[\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(\mathrm{c})\right]
$$

where $\mathrm{M}^{\prime}(\mathrm{f})=\sup \left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{c}\right]\right\}$

$$
\mathrm{M}^{\prime \prime}(\mathrm{f})=\sup \left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[\mathrm{c}, \mathrm{x}_{\mathrm{i}}\right]\right\}
$$

clearly, $M^{\prime}(f) \leqslant M_{i}(f)+M^{\prime \prime}(f) \leqslant M_{i}(f) \ldots \ldots$ (1)

Now, $M^{\prime}(\mathrm{f})\left[\alpha(\mathrm{c})-\alpha\left(\mathrm{x}_{\mathrm{i}-1}\right)\right]+\mathrm{M}^{\prime \prime}(\mathrm{f})\left[\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(\mathrm{c})\right] \leqslant \mathrm{M}_{\mathrm{i}}(\mathrm{f})\left[\alpha(\mathrm{c})-\alpha\left(\mathrm{x}_{\mathrm{i}-1}\right)\right]+$ $M_{i}(f)\left[\alpha\left(x_{i}\right)-\alpha(c)\right] \quad$ (by equation (1))
$=\mathrm{M}_{\mathrm{i}}(\mathrm{f})\left[\alpha(\mathrm{c})-\alpha\left(\mathrm{x}_{\mathrm{i}-1}\right)+\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(\mathrm{c})\right]$
$=M_{i}(f)\left[\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right]$
$\sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}+M^{\prime}(f)\left[\alpha(c)-\alpha\left(x_{i-1}\right)\right]+M^{\prime \prime}(f)\left[\alpha\left(x_{i}\right)-\alpha(c)\right]$
$\leq \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}+M_{i}(f)\left[\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right] \leq \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}$
$\therefore\left(U\left(P^{\prime}, f, \alpha\right) \leq U(P, f, \alpha)\right.$
$L\left(P^{\prime}, f, \alpha\right) \geq L(P, f, \alpha)$
(ii) Let $P_{1} \& P_{2}$ be two partitions of $[a, b]$.

Let $P=P_{1} \cup P_{2}$
$\Rightarrow P_{1} \subseteq P \& P_{2} \subseteq P$
Then by $(i), \mathrm{L}\left(P_{1}, f, \alpha\right) \leqslant \mathrm{L}(P, f, \alpha) \leqslant U(P, f, \alpha) \leqslant U\left(P_{2}, f, \alpha\right)$
$\Rightarrow L\left(P_{1}, f, \alpha\right) \leqslant U\left(P_{2}, f, \alpha\right)$

Note:

If $\alpha \nearrow$ on $[a, b]$, then $m[\alpha(b)-\alpha(a)] \leq M \cdot[\alpha(b)-\alpha(a)]$
Where
$M=\sup \{f(x): x \in[a, b]\} m=\inf \{f(x): x \in[a, b]\}$
For, $m \cdot[\alpha(b)-\alpha(a)] \leq L\left(P_{1}, f, \alpha\right)$

$$
\begin{aligned}
& \leq u\left(P_{2}, f, \alpha\right) \\
& \leq M \cdot[\alpha(b)-\alpha(a)]
\end{aligned}
$$

$\therefore m[\alpha(b)-\alpha(a)] \leq M \cdot[\alpha(b)-\alpha(a)]$

Definition 2.23:

Assume that $\alpha \nearrow$ on $[a, b]$.The Upper Riemann-stieltjes Integral of ' f^{\prime} w.r.t ' α ' is defined as follows: $\bar{I}(f, \alpha)=\int_{a}^{-b} f d \alpha=\inf \{U(P, f, \alpha) ; p \in \mathcal{P}[a, b]\}$

The Lower Riemann- stieltjes Integral of ' f ' w.r.t ' α ' is defined as follows: $\underline{I}(f, \alpha)=$ $\int_{-a}^{b} f d \alpha=\sup \{L(P, f, \alpha): p \in \mathcal{P}[a, b]\}$ If $\int_{-a}^{b} f d \alpha=\int_{a}^{-b} f d \alpha$, then ' f ' is said to be Riemann- stieltjes integrable on $[a, b]$.

Note:

When $\alpha(x)=x$, then $U(P, f) \& L(P, f)$ are called the upper and lower Riemann sums. The corresponding Upper Riemann Integral is $\int_{a}^{-b} f(x) d x=\inf \{U(P, f) ; P \in \mathcal{P}[a, b]\}$

The Lower Riemann integral is $\int_{-a}^{b} f(x) d x=\sup \{L(P, f): P \in \mathcal{P}[a, b]\}$
If $\int_{-a}^{b} f(x) d x=\int_{a}^{-b} f(x) d x$, then ' f ' is said to be Riemann Integrable on $[a, b]$.

Theorem 2.24:

Assume that $\alpha \nearrow$ on $[a, b]$. Then $\bar{I}(f, \alpha) \leq \bar{I}(f, \alpha)$ (i.e.) $\int_{-a}^{b} f d \alpha \leq \int_{a}^{b} f d \alpha$

Proof:

Let P be a partition of $[a, b]$

Let $\varepsilon>0$ be given

Then there exsist a partition $P_{1} \ni: U\left(P_{1}, f, \alpha\right)<\bar{I}(f, \alpha)+\varepsilon$

Let P be finer than P_{1}
(i.e.), $P_{1} \subseteq P$

Then by Theorem 2.22,
$L\left(P_{1}, f, \alpha\right) \leq L\left(P_{2}, f, \alpha\right) \& U\left(P_{1}, f, \alpha\right) \geq U\left(P_{2}, f, \alpha\right)$
$\Rightarrow L\left(P_{1}, f, \alpha\right) \leq L\left(P_{2}, f, \alpha\right) \leq U\left(P_{2}, f, \alpha\right) \leq U\left(P_{1}, f, \alpha\right)$
$\Rightarrow L\left(P_{1}, f, \alpha\right) \leq U\left(P_{1}, f, \alpha\right)$
$\Rightarrow L(P, f, \alpha) \leq \bar{I}(f, \alpha)+\varepsilon$
(i.e.)., $\bar{I}(f, \alpha)+\varepsilon$ is an upper bound to all lower sums $L(P, f, \alpha)$

From the definition of supremum and by (2), we get,
$\sup \{L(p, f, \alpha): P \in \mathcal{P}[a, b]\} \leq \bar{I}(f, \alpha)+\varepsilon$
(i.e.) $\underline{I}(f, \alpha) \leq \bar{I}(f, \alpha)+\varepsilon$
$\because \varepsilon>0$ is arbitrary, we get, $\underline{I}(f, \alpha)<\bar{I}(f, \alpha)$

Example 2.25:

It is easy to give an example in which $\underline{I}(f, \alpha):<\bar{I}(f, \alpha)$.

Let $\alpha(x)=x$

Define ' f ' on $[0,1]$ as follows.
$f(x)=\left\{\begin{array}{c}1 \text { if } x \text { is rational } \\ 0 \text { if } x \text { is irrational }\end{array}\right.$

Then for every partition P of $[0,1]$, we have
$M_{k}(f)=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=1$
and $m_{k}(r)=\inf \left\{f(x): \mathrm{x} \in\left[x_{k-1}, x_{k}\right]\right\} \equiv 0$
(i.e.) $M_{k}(f)=1 \& m_{k}(f)=0$
\because Every subinterval contains both rational and irrational numbers
$\therefore U(P, f)=\sum M_{k}(f) \cdot \Delta x_{k}=\sum 1 \cdot \Delta x_{k}=\sum x_{k}=b=a=1$
$L(P, f)=\sum m_{k}(f) \cdot \Delta x_{k}=\sum 0 \cdot \Delta x_{k}=0$
(i.e.)., $U(P, f)=1 \& L(P, f)=0 \forall P$.
\therefore For $[a, b]=[0,1], \int_{a}^{-b} f(x) d x=\inf \{\mathrm{U}(P, f): P \in \mathcal{P}[a, b]\}=1$
and $\int_{-a}^{b} f(x) d x=\sup \{\mathrm{L}(P, f): P \in \mathcal{P}[a, b]\}=0$
The same result holds if $f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}$

Additive and Linearity Properties of Upper and Lower Integrals.

Theorem 2.26:

Let ' f ' be a function defined on $[a, b]$ and let ' α ' be an increasing function on $[a, b]$. Then for any $c \in(a, b)$ we have that
a) $\int_{a}^{-b} f d \alpha=\int_{a}^{-c} f d \alpha+\int_{c}^{-b} f d \alpha$
b) $\int_{-a}^{b} f d \alpha=\int_{-a}^{c} f d \alpha+\int_{-c}^{b} f d \alpha$

Proof:

Let ' f ' be a function on $[a, b]$

Let ' α ' be an increasing function on $[\mathrm{a}, \mathrm{b}]$

Let $c \in(a, b)$.

Let $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=c=y_{0}, y_{1}, \ldots, y_{m}=b\right\}$ be a partition of $[a, b]$

Let $P_{1} \equiv\left\{a=x_{0}, x_{1}, \ldots, x_{n}=c\right\}-d, P_{2}=\left\{c=-y_{0}, y_{1}, \ldots, y_{m}=b\right\}$, be the partitions of $[a, c] \&[c, b]$. respectively.
a) Now, $\int_{a}^{b} f d \alpha=\inf \{U(P, f, \alpha): P \in \mathcal{P}[\Omega, b]\}$

$$
=\inf \left\{\sum_{k=1}^{n} \sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \Delta \alpha_{k}+\sum_{k=1}^{m} \sup \left\{f(y): y \in\left[y_{k-1}, y_{k}\right]\right\} \Delta \alpha_{k}\right\}
$$

$$
\begin{aligned}
&=\inf \left\{\sum_{k=1}^{n} \sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \Delta \alpha_{k}: p_{l} \in \mathcal{P}[a, c]\right\} \\
&+\inf \left\{\sum_{k=1}^{m} \sup \left\{f(y): y \in\left[y_{k-1}, y_{k}\right]\right\} \Delta \alpha_{k}: P_{2} \in \mathcal{P}[c, b]\right\}
\end{aligned}
$$

$=\inf \left\{U\left(P_{1}, f, \alpha\right): P_{1} \in \mathcal{P}[a, c]\right\}+\inf \left\{U\left(P_{2}, f, \alpha\right): P_{2} \in \mathcal{P}[c, b]\right\}=\int_{a}^{-c} f d \alpha+\int_{c}^{-b} f d \alpha$
$\therefore \int_{a}^{-b} f d \alpha=\int_{a}^{-c} f d \alpha+\int_{c}^{-b} f d \alpha$

Similarly, we can prove that
$\int_{-a}^{b} f d \alpha=\int_{-a}^{c} f d \alpha+\int_{-c}^{b} f d \alpha$.

Theorem 2.27:

Let ' f ' and ' g ' be any functions defined on $[a, b]$ and let ' α ' be an increasing function on $[a, b]$. Then
a) $\int_{a}^{-b}(f+g) d \alpha \leq \int_{0}^{-b} f d \alpha+\int_{a}^{-b} g d \alpha$
b) $\int_{-a}^{b}(f+g) d \alpha \geq \int_{-a}^{b} f d \alpha+\int_{-a}^{b} g d \alpha$

Proof:

Let ' f ' and ' g ' be any functions defined on $[a, b]$
let ' α ' be an increasing function on $[a, b]$

Let $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\} \in \mathcal{P}[a, b]$
Clearly, $f(x) \leq \sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$
$g(x) \leq \sup \left\{g(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$
$\Rightarrow f(x)+g(x) \leq \sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}+\sup \left\{g(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$

$$
\begin{aligned}
\Rightarrow \sup \{f(x)+ & \left.g(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \\
& \leq \sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}+\sup \left\{g(x): x \in\left[x_{k-1}, x_{k}\right]\right\}
\end{aligned}
$$

(i.e.) $M_{k}(f+g) \leq M_{k}(f)+M_{k}(g)$
$\Rightarrow \sum_{k=1}^{n} M_{k}(f+g) \Delta \alpha_{k} \leqslant \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}+\sum_{k=1}^{n} M_{k}(g) \Delta \alpha_{k}$
(i.e.) $U(P,(f+g), \alpha) \leq U(P, f, \alpha)+U(P, g, \alpha)$

Taking infimum, we get,

$$
\int_{a}^{-b}(f+g) d \alpha \leq \int_{a}^{-b} f d \alpha+\int_{a}^{-b} g d \alpha
$$

Similarly, we can prove that

$$
\int_{-a}^{b}(f+g) d \alpha \geqslant \int_{-a}^{b} f d \alpha+\int_{-a}^{b} g d \alpha
$$

Riemann's Condition:

Definition 2.28:

We say that ' f ' satisfies Riemann's condition with respect to ' α ' on $[\mathrm{a}, \mathrm{b}]$ if for every $\varepsilon>0, \exists$ a partition P_{ε} such that P finer than P_{ε} implies $0 \leq U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon$.

Theorem 2.29:

Assume that $\alpha \nearrow[a, b]$. Then the following three statements are equivalent
(i) $\mathrm{f} \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$.
(ii) f satisfies Riemann's condition w.r.to α on [a. b]
(iii) $\quad \mathrm{I}(\mathrm{f}, \alpha)=I(f, \alpha)$

Proof:

Let f and ' α ' be real - valued fns defined on $[\mathrm{a}, \mathrm{b}]$.
Given α is an increasing on [a, b]
(i) TP: (i) \rightarrow (ii)

Assume that $\mathrm{f} \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$

Let $\mathrm{P}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots, x_{n}=b\right\} \in P[a, b]$
Let $t_{k} \in\left[x_{k-1}, x_{k}\right]$ and $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\varepsilon>0$ be given
To prove: f satisfies Riemann's condition w.r.to α on $[\mathrm{a}, \mathrm{b}]$
(i.e.) To prove: $0 \leq U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon$

Here ' α ' is increasing on [a, b]
Case (i): $\alpha(a)=\alpha(b)$
' α ' is a constant function.
$\therefore \Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)=0$
(i.e.) $\Delta \alpha_{k}=0 \forall k=1,2, \ldots, n$
$U(P, f, \alpha)=0$ and $L(P, f, \alpha)=0$
$\Rightarrow 0=U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon$
\therefore Riemann's condition is satisfied trivially
Case (ii): $\alpha(a)<\alpha(b)$
Now, $\mathrm{f} \in R(\alpha)$
$\Rightarrow \exists A \in \mathbb{R} \ni: \forall \varepsilon_{1}=\frac{\varepsilon}{3}>0, \exists P_{\varepsilon_{1}}$ of $[\mathrm{a}, \mathrm{b}] \ni \forall \mathrm{P}$ is finer than $P_{\varepsilon_{1}}$ and all choice of $t_{k}, t_{k}^{\prime} \in$ [x_{k-1}, x_{k}] we have,

$$
\begin{align*}
& \left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A\right|<\frac{\varepsilon}{3} \\
& \left|\sum_{k=1}^{n} f\left(t_{k}^{\prime}\right) \Delta \alpha_{k}-A\right|<\frac{\varepsilon}{3} \tag{i}
\end{align*}
$$

Where $\mathrm{A}=\int_{a}^{b} f d \alpha$
Now,

$$
\begin{aligned}
\left|\sum_{k=1}^{n}\left(f\left(t_{k}\right)-f\left(t_{k}^{\prime}\right)\right) \Delta \alpha_{k}\right| & =\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-\sum_{k=1}^{n} f\left(t_{k}^{\prime}\right) \Delta \alpha_{k}\right| \\
& =\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A+A-\sum_{k=1}^{n} f\left(t_{k}^{\prime}\right) \Delta \alpha_{k}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \quad \leq\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-A\right|+\left|-\left(\sum_{k=1}^{n} f\left(t_{k}^{\prime}\right) \Delta \alpha_{k}-A\right)\right| \\
& \quad<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}[\text { by } 1] \\
& \quad=\frac{2 \varepsilon}{3}
\end{aligned}
$$

Now, $M_{k}(f)-m_{k}(f)=\sup f(x)-\inf f(x) \forall x \in\left[x_{k-1}, x_{k}\right]$

$$
\begin{aligned}
& =\sup f(x)-\sup f(-x) \\
& =\sup f(x)-\sup f\left(x^{\prime}\right) \forall x, x^{\prime} \in\left[x_{k-1}, x_{k}\right]
\end{aligned}
$$

$\therefore M_{k}(f)-m_{k}(f)=\sup \left\{f(x)-f\left(x^{\prime}\right): x, x^{\prime} \in\left[x_{k-1}, x_{k}\right]\right\}$

$$
\geq f(x)-f\left(x^{\prime}\right)
$$

$\therefore M_{k}(f)-m_{k}(f) \geq f(x)-f\left(x^{\prime}\right) \forall h>0, \exists t_{k}, t^{\prime}{ }_{k} \in\left[x_{k-1}, x_{k}\right] \ni:$

$$
M_{k}(f)-m_{k}(f)-h<f\left(t_{k}\right)-f\left(t^{\prime}{ }_{k}\right)
$$

$$
\Rightarrow M_{k}(f)-m_{k}(f)<f\left(t_{k}\right)-f\left(t_{k}^{\prime}\right)+h
$$

Choose $\mathrm{h}=\frac{\varepsilon}{3[\alpha(b)-\alpha(a)]}>0$
Now, $U(P, f, \alpha)-L(P, f, \alpha)=\sum_{k=1}^{n}(f) M_{k} \Delta \alpha_{k}-\sum_{k=1}^{n}(f) m_{k} \Delta \alpha_{k}$

$$
=\sum_{k=1}^{n}\left[(f) M_{k}-m_{k}(f)\right] \Delta \alpha_{k}
$$

$$
<\sum_{k=1}^{n}\left[(f) M_{k}-m_{k}(f)\right] \Delta \alpha_{k}
$$

$$
<\sum_{k=1}^{n}\left[f\left(t_{k}\right)-f\left(t_{k}^{\prime}\right)+h\right] \Delta \alpha_{k}
$$

$$
=\sum_{k=1}^{n}\left[f\left(t_{k}\right)-f\left(t_{k}^{\prime}\right)\right] \Delta \alpha_{k}+\sum_{k=1}^{n} h \Delta \alpha_{k}
$$

$$
<\frac{2 \varepsilon}{3}+\sum_{k=1}^{n} h \Delta \alpha_{k} \quad(\text { by } 2)
$$

$$
=\frac{2 \varepsilon}{3}+\frac{\varepsilon}{3(\alpha(b)-\alpha(a))} \alpha(b)-\alpha(a)
$$

$$
=\varepsilon
$$

$U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon$
\therefore Riemann's condition is satisfied.
(ii) To prove: (ii) \Rightarrow (iii)

Assume that ' f ' satisfies Riemann's condition w.r.to s on $[\mathrm{a}, \mathrm{b}]$.
$\Rightarrow \forall \varepsilon>0, \exists$ a partition $P_{\varepsilon} \ni$: P finer than P_{ε}
$\Rightarrow 0 \leq U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon$
To prove: $\underline{I}(f, \alpha)=\bar{I}(f, \alpha)$
Now, $U(P, f, \alpha)-L(P, f, \alpha)<\varepsilon$
$\Rightarrow U(P, f, \alpha)<L(P, f, \alpha)+\varepsilon$
We know that, $\inf U(P, f, \alpha)<U(P, f, \alpha)$
$\Rightarrow \bar{I}(\mathrm{f}, \alpha)<U(P, f, \alpha)$
And we know that,
$L(P, f, \alpha)<\sup L(P, f, \alpha)$
$\Rightarrow L(P, f, \alpha)<\underline{I}(f, \alpha)$ \qquad

Now,
$\bar{I}(\mathrm{f}, \alpha)<U(P, f, \alpha)$ [by equation (4)]
$<L(P, f, \alpha)+\varepsilon$ [by equation (3)]
$<\underline{I}(\mathrm{f}, \alpha)+\varepsilon$ [by equation (5)]
$\bar{I}(\mathrm{f}, \alpha)<\underline{I}(\mathrm{f}, \alpha)+\varepsilon \forall \varepsilon>0$
Since, $\varepsilon>0$ is arbitrary,
$\underline{I}(f, \alpha) \leq \bar{I}(f, \alpha)$ \qquad
Given $\alpha \nearrow$ on [a, b]
Then by Theorem 2.24,
$\mathrm{I}(\mathrm{f}, \alpha) \leq \mathrm{I}(\mathrm{f}, \alpha)$

From equation (6) and (7) we get,
$\mathrm{I}(\mathrm{f}, \alpha) \leq \mathrm{I}(\mathrm{f}, \alpha)$
(iii) $\Rightarrow(i)$

Assume that I (f, α) $=\mathrm{I}(\mathrm{f}, \alpha)$
To prove: $\mathrm{f} \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
(i.e.) $\int_{a}^{b} f d \alpha$ exists
(i.e.) To prove: $|S(P, f, \alpha)-A|<\varepsilon$ where $\mathrm{A}=\int_{a}^{b} f d \alpha$

We know that $\bar{I}(f, \alpha)=\inf \{U(P, f, \alpha): P \in \wp[a, b]\}$
$\underline{I}(f, \alpha)=\sup \{L(P, f, \alpha): P \in \wp[a, b]\}$
Given $\bar{I}(f, \alpha)=\underline{I}(f, \alpha)$
Given, $\varepsilon>0$ choose $P_{\varepsilon}^{\prime} \ni: U(P, f, \alpha)<\bar{I}(f, \alpha)+\varepsilon \forall P$ finer than $P_{\varepsilon}^{\prime \prime} \ni$:
$L(P, f, \alpha)<\underline{I}(f, \alpha)+\varepsilon \forall P$ finer than $P_{\varepsilon}^{\prime \prime}$
Let $P_{\varepsilon}=P_{\varepsilon}^{\prime} \cup P_{\varepsilon}^{\prime \prime}$
Then $\forall \mathrm{P}$ finer than P_{ε}

$$
\begin{aligned}
& \underline{I}(f, \alpha)-\varepsilon<L(P, f, \alpha) \leq S(P, f, \alpha) \leq U(P, f, \alpha)<\bar{I}(f, \alpha)+\varepsilon \\
& \quad \Rightarrow \underline{I}(f, \alpha)-\varepsilon<S(P, f, \alpha) \leq U(P, f, \alpha)<\bar{I}(f, \alpha)+\varepsilon \\
& \quad \Rightarrow A-\varepsilon<S(P, f, \alpha)<A+\varepsilon \\
& \quad \Rightarrow-\varepsilon<S(P, f, \alpha)-A<\varepsilon \\
& \quad \Rightarrow|S(P, f, \alpha)-A|<\varepsilon
\end{aligned}
$$

Hence $\mathrm{f} \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$

Comparison Theorems:

Theorem 2.30:

Assume that $\alpha \nearrow$ on [a,b]. If $\mathrm{f} \epsilon R(\alpha)$ and $\mathrm{g} \epsilon R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ and if $\mathrm{f}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$ for all x in $[\mathrm{a}, \mathrm{b}]$, then we have $\int_{a}^{b} f(x) d \alpha(x) \leq \int_{a}^{b} g(x) d \alpha(x)$.

Proof:

Given $\alpha \nearrow$ on [a,b].
Let $\mathrm{P}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots, x_{n}=b\right\} \in \mathrm{D}[\mathrm{a}, \mathrm{b}]$
Let $t_{k} \in\left[x_{k-1}, x_{k}\right]$ and $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\epsilon>0$ be given
$\mathrm{f} \epsilon R(\alpha)$ and $\mathrm{g} \epsilon R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ and if $\mathrm{f}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$ for all x in $[\mathrm{a}, \mathrm{b}]$,
To prove: $\int_{a}^{b} f(x) d \alpha(x) \leq \int_{a}^{b} g(x) d \alpha(x)$
$\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$,
$\Delta \alpha_{k}$ for all $\mathrm{k}=1,2, \ldots \mathrm{n}$
Given $\mathrm{f}(\mathrm{x}) \leq \mathrm{g}(\mathrm{x})$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
$\mathrm{f}\left(t_{k}\right) \leq \mathrm{g}\left(t_{k}\right)$ for all $t_{k} \in\left[x_{k-1}, x_{k}\right]$
$\sum_{k=1}^{n} \mathrm{f}\left(t_{k}\right) \Delta \alpha_{k} \leq \sum_{k=1}^{n} \mathrm{~g}\left(t_{k}\right) \Delta \alpha_{k}$
$\mathrm{S}(\mathrm{p}, \mathrm{f}, \alpha) \leq \mathrm{S}(\mathrm{p}, \mathrm{g}, \alpha)$
$\mathrm{f}, \mathrm{g} \in R(\alpha)$ for $\|P\| \rightarrow 0$, we have $\mathrm{S}(\mathrm{p}, \mathrm{f}, \alpha) \rightarrow \int_{a}^{b} f \mathrm{~d} \alpha$ and $\mathrm{S}(\mathrm{p}, \mathrm{g}, \alpha) \rightarrow \int_{a}^{b} g \mathrm{~d} \alpha$
from equation (3) $\int_{a}^{b} f \mathrm{~d} \alpha \leq \int_{a}^{b} g \mathrm{~d} \alpha$
(i.e.), $\int_{a}^{b} f(x) d \alpha(x) \leq \int_{a}^{b} g(x) d \alpha(x)$

Note:

In particular, the above Theorem implies that whenever $g(x) \geq 0$ and $\alpha \nearrow$ on [a,b], $\int_{a}^{b} g(x) d \alpha(x) \geq 0$

Theorem 2.31:

Assume that $\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$. $\mid \mathrm{f} \mathrm{f} \epsilon R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, then $|\mathrm{f}| \epsilon R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ and we have the inequality $\left|\int_{a}^{b} f(x) d \alpha(x)\right| \leq \int_{a}^{b}|f(x)| d \alpha(x)$.

Proof:

Assume that $\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$.
Let $\mathrm{P}=\left\{\mathrm{a}=x_{0}, x_{1}, \ldots, x_{n}=b\right\} \in \mathrm{D}[\mathrm{a}, \mathrm{b}]$
Let $t_{k} \in\left[x_{k-1}, x_{k}\right]$ and $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\epsilon>0$ be given
Given $\mathrm{f} \epsilon R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
Given $\epsilon>0$, there exist a partition P_{ε} such that P finer than P_{ε}
$\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)-L(\mathrm{P}, \mathrm{f}, \alpha)<\varepsilon$
$\sum_{k=1}^{n} M_{k}(\mathrm{f}) \Delta \alpha_{k}-\sum_{k=1}^{n} m_{k}(\mathrm{f}) \Delta \alpha_{k}<\varepsilon$
$\sum_{k=1}^{n}\left[M_{k}(\mathrm{f})-m_{k}(\mathrm{f})\right] \Delta \alpha_{k}<\varepsilon------(1)$
Where, $M_{k}(\mathrm{f})=\sup \left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[x_{k-1}, x_{k}\right]\right\}$ and

$$
m_{k}(\mathrm{f})=\inf \left\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in\left[x_{k-1}, x_{k}\right]\right\}
$$

To prove: $|\mathrm{f}| \in R(\alpha)$
Now, $M_{k}(\mathrm{f})-m_{k}(\mathrm{f})=\sup \mathrm{f}(\mathrm{x})-\inf \mathrm{f}(\mathrm{x}), \mathrm{x} \in\left[x_{k-1}, x_{k}\right]$

$$
\begin{gathered}
=\sup \mathrm{f}(\mathrm{x})-\sup \mathrm{f}(-\mathrm{x}) \\
=\sup \mathrm{f}(\mathrm{x})-\sup \mathrm{f}(\mathrm{y}) \\
M_{k}(\mathrm{f})-m_{k}(\mathrm{f})=\sup \left\{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y}): \mathrm{x}, \mathrm{y} \in\left[x_{k-1}, x_{k}\right]\right\}---(2)
\end{gathered}
$$

We know that $\|f(x)-f(y)\| \leq\|f(x)-f(y)\|$
Equation (2)=> $\left|M_{k}(|\mathrm{f}|)-m_{k}(|\mathrm{f}|)=\right| \sup \left\{|\mathrm{f}(\mathrm{x})|-|\mathrm{f}(\mathrm{y})|: \mathrm{x}, \mathrm{y} \in\left[x_{k-1}, x_{k}\right]\right\}$
$\leq\left|\sup \left\{(\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})): \mathrm{x}, \mathrm{y} \in\left[x_{k-1}, x_{k}\right]\right\}\right|$
$=\left|M_{k}(\mathrm{f})-m_{k}(\mathrm{f})\right|$
$\left|M_{k}(|\mathrm{f}|)-m_{k}(|\mathrm{f}|) \leq\left|M_{k}(\mathrm{f})-m_{k}(\mathrm{f})\right|\right.$
$\operatorname{Sup}\left\{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y}): \mathrm{x}, \mathrm{y} \in\left[x_{k-1}, x_{k}\right]\right\}>0$
$\left|M_{k}(|\mathrm{f}|)-m_{k}(|\mathrm{f}|) \leq\left|M_{k}(\mathrm{f})-m_{k}(\mathrm{f})\right|\right.$
$\sum_{k=1}^{n}\left[M_{k}(|\mathrm{f}|)-m_{k}(|\mathrm{f}|)\right] \Delta \alpha_{k} \leq \sum_{k=1}^{n}\left[\left|M_{k}(\mathrm{f})-m_{k}(\mathrm{f})\right|\right] \Delta \alpha_{k}$
$\sum_{k=1}^{n} M_{k}(|\mathrm{f}|) \Delta \alpha_{k}-m_{k}(|\mathrm{f}|) \Delta \alpha_{k}<\varepsilon($ by $(1))$
$\mathrm{U}(\mathrm{P},|\mathrm{f}|, \alpha)-L(\mathrm{P},|\mathrm{f}|, \alpha)<\varepsilon$
$\mathrm{f} \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
Take $\mathrm{g}=|\mathrm{f}|$
Then by Theorem 2.30, $\int_{a}^{b} f(x) d \alpha(x)\left|\leq \int_{a}^{b}\right| f(x) \mid d \alpha(x)$.
$-\int_{a}^{b} f(x) d \alpha(x) \leq \int_{a}^{b} f(x) d \alpha(x) \leq \int_{a}^{b}|f(x)| d \alpha(x)$.
$\int_{a}^{b} f(x) d \alpha(x) \leq \int_{a}^{b}|f(x)| d \alpha(x)$

Note:

The converse of the above Theorem is not true. (i.e.) $\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$ and $|\mathrm{f}| \in R(\alpha) \nRightarrow \mathrm{f} \in R(\alpha)$

Theorem 2.32:

Assume that $\alpha \nearrow$ on $[a, b]$. If $f \in R(\alpha)$ on $[a, b]$, then $f^{2} \in R(\alpha)$ on $[a, b]$.

Proof:

Assume that $\alpha \nearrow$ on $[a, b]$

Let $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\} \in \mathcal{P}_{2}[a, b]$
Let $t_{k} \in\left[x_{k-1}, x_{k}\right]+\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\varepsilon>0$ be given

Let M be an upper bound of $|\mathrm{f}|$ on $[a, b]$ \qquad

Given $f \in R(\alpha)$ on $[a, b] \Rightarrow|f| \in R(\alpha)$ on $[a, b]$ (by Thm (7.2))
$\Rightarrow \forall \varepsilon_{1}=\frac{\epsilon}{Q M}>0, \exists$ a partition $P_{\varepsilon_{1}} \in P[a, b]:$
P is finer than $P_{\varepsilon_{1}}$ implies.
$U\left(P_{2},|f|, \alpha\right)-L\left(P_{1},|f|, \alpha\right)<\varepsilon_{1}$
$\Rightarrow \sum_{k=1}^{n} M_{k}(|f|) \Delta \alpha_{k}-\sum_{k=1}^{n} m_{k}(|f|) \Delta \alpha_{k}<\frac{\varepsilon}{2 M}$
$\Rightarrow \sum_{k=1}^{n}\left[M_{k}(|f|)-m_{k}(|f|)\right] \Delta \alpha_{k}<\frac{\varepsilon}{\Delta M}$

Where, $M_{k}(f)=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$
and $m_{k}(f)=\ln f\left\{f(x): x \in\left[x_{k=1,2} x_{k}\right]\right\}$
To prove: $f^{2} \in R(\alpha)$ on $[a, b]$

Now,

$$
\begin{aligned}
M_{k}\left(f^{2}\right) & =\sup \left\{[f(x)]^{2}: x \in\left[x_{k-1}, x_{k}\right]\right\} \\
& =\sup \left\{|f(x)|^{2}: x \in\left[x_{k-1}, x_{k}\right]\right\} \\
& =\left[\sup \left\{|f(x)|: x \in\left[x_{k}, x_{k}\right]\right\}\right]^{2} \\
& =\left[M_{k}(|f|)\right]^{2}
\end{aligned}
$$

(i.e.), $M_{k}\left(f^{2}\right)=\left[M_{k}(|f|)\right]^{2}$
similarly $m_{k}\left(f^{2}\right)=\left[m_{k}(|f|)\right]^{2}$

Now,
$M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right)=\left[M_{k}(|f|]^{2}-\left[m_{k}(|f|)\right]^{2}\right.$

$$
\left.=\left(M_{k}(|f|)+m_{k}(|f|)\right)\left(M_{k}|f|\right)-m_{k}(|f|)\right)
$$

$m_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right) \leq 2 M\left[M_{k}(|f|)-m_{k}(|f|)\right]$ (by $\left.(1)\right)$
$\Rightarrow \sum_{k=1}^{n} M_{k}\left(f^{2}\right) \cdot \Delta \alpha_{k}-\sum_{k=1}^{n} m_{k}\left(f^{2}\right) \cdot \Delta \alpha_{k}$
$\leqslant 2 M\left[\sum_{k=1}^{n}\left[M_{k}(|f|)-m_{k}(|f|)\right] \Delta \alpha_{k}\right]$
$\Rightarrow U\left(P, f^{2}, \alpha\right)-L\left(P, f^{2}, \alpha\right)<2 M \cdot \frac{\varepsilon}{2 M}-($ by (2))
$\Rightarrow U\left(P, f^{2}, \alpha\right)-L\left(P, f^{2}, \alpha\right)<\varepsilon \Rightarrow f^{2} \in R(\alpha)$ on $[a, b]$.

Theorem 2.33:

Assume that $\alpha \nearrow$ on $[a, b]$. If $f \in R(\alpha)$ and $g \in R(\alpha)$ on $[a, b]$, then the product $f . g \in$ $R(\alpha)$ on $[a, b]$.

Proof:

Assume that $\alpha \nearrow$ on $[a, b]$

Given $f \in R(\alpha) \& g \in R(\alpha)$ on $[a, b]$

To prove: $f . g \in R(\alpha)$ on $[a, b]$

Now, $[f(x)+g(x)]^{2}=[f(x)]^{2}+[g(x)]^{2}+2 f(x) g(x)$
$\Rightarrow f(x) g(x)=\frac{1}{2}[f(x)+g(x)]^{2}-\frac{1}{2}[f(x)]^{2}-\frac{1}{2}[g(x)]^{2}$
$\because f \in R(\alpha)$ and $g \in R(\alpha)$, by Theorem2.4 \& 2.32,
$\frac{1}{2}[f+g]^{2}, \frac{1}{2} \cdot f^{2}, \frac{1}{2} \cdot g^{2} \in R(\alpha)$
$\Rightarrow \frac{1}{2}(f+g)^{2}-\frac{1}{2} f^{2}-\frac{1}{2} g^{2} \in R(\alpha)$ (i.e.) $f . g \in R(\alpha)$

Unit III

The Riemann-Stieltjes Integral - Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes Integrals-Necessary conditions for the existence of RS integrals- Mean value theorems -integrals as a function of the interval -Second fundamental Theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann integral- Riemann-Stieltjes integrals depending on a parameter.

INTEGRATORS OF BOUNDED VARIATIONS

Note 3.1:

If ' α ' is of bounded variation on [a, b], then ' α ' can be expressed as the difference of two increasing functions α_{1} and α_{2}. (i.e.). $\alpha=\alpha_{1}-\alpha_{2}$.

If $\alpha=\alpha_{1}-\alpha_{2}$ is such a decomposition and if $\mathrm{f} \in \mathrm{R}\left(\alpha_{1}\right)$ and $\mathrm{f} \in \mathrm{R}\left(\alpha_{2}\right)$ on [a, b] , then $\mathrm{f} \in \mathrm{R}(\alpha)$ But the converse is not true.
(i.e.). If $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, then it is quite possible to choose increasing functions α_{1} and α_{2} such that neither integral $\int_{a}^{b} f d \alpha_{1}$ and $\int_{a}^{b} f d \alpha_{2}$ exits

The uniqueness of the decomposition $\alpha=\alpha_{1}-\alpha_{2}$ is not possible .
The converse is true when there exists at least one decomposition such that α_{1} is the total variations of α and $\alpha_{2}=\alpha_{1}-\alpha$.

Theorem 3.2:

Assume that α is the bounded variations on $[\mathrm{a}, \mathrm{b}]$. Let $\mathrm{V}(\mathrm{x})$ denote the total variation of ' α 'on $[\mathrm{a}, \mathrm{x}]$. If $\mathrm{a}<\mathrm{x} \leq \mathrm{b}$, and let $\mathrm{V}(\mathrm{a})=0$. Let f be defined and bounded on $[\mathrm{a}, \mathrm{b}]$. If $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}$, $b]$, then $\mathrm{f} \in \mathrm{R}(V)$ on $[\mathrm{a}, \mathrm{b}]$.

Proof:

Let α be of bounded variation on [a, b]
Let $\mathrm{V}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathcal{R}$ such that

$$
\mathrm{V}(\mathrm{x})=\left\{\begin{array}{lr}
0 & \text { if } x=a \tag{1}\\
V_{\alpha}(a, x) \text { if } & a<x \leq b
\end{array}\right.
$$

Let $\mathrm{P}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots . . \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\} \in \mathcal{P}[\mathrm{a}, \mathrm{b}]$
Let $t_{k} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]$ and $\Delta \alpha_{k}=\alpha\left(\mathrm{x}_{\mathrm{k}}\right)-\alpha\left(\mathrm{x}_{\mathrm{k}-1}\right)$
Let $\varepsilon>0$ be given
Let f be defined and bounded on $[\mathrm{a}, \mathrm{b}]$
\Rightarrow There exits $\mathrm{M}>0$ such that $\mathrm{I} f(x) \mid<\mathrm{M}$, where $\mathrm{x} \in[0, \mathrm{~b}]$

Given: $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
To prove: $\mathrm{f} \in \mathrm{R}(V)$ on $[\mathrm{a}, \mathrm{b}]$
Case (i): $\mathrm{V}(\mathrm{b})=0$
$\Rightarrow \mathrm{V}$ is a constant function $=>\Delta V_{k}=0$
$\Rightarrow f \in \mathrm{R}(\mathrm{V})$
case(ii) $\mathrm{V}(\mathrm{b})>0$
\Rightarrow from the definition of total variation, we get $x<y \Rightarrow V(x) \leq V(y)$
$\Rightarrow \mathrm{V}$ is an increasing function on $[\mathrm{a}, \mathrm{b}]$

Therefore, it is enough to show that, ' f ' satisfies the Riemann condition w.r.to V on [a, b], (i.e.) To prove: $\mathrm{U}(\mathrm{p}, \mathrm{f}, \mathrm{v})-\mathrm{L}(\mathrm{p}, \mathrm{f}, \mathrm{v})<\varepsilon$

Now, Given: $\mathrm{f} \in \mathrm{R}(\alpha)$
\Rightarrow There exists $\mathrm{A} \in \mathcal{R}$ suchthat $\forall \varepsilon_{1}=\frac{\varepsilon}{8}>0$, there exist $P_{\varepsilon_{1}}$ of $[\mathrm{a}, \mathrm{b}]$ suchthat
$\forall \mathrm{P}$ finer than $\&$ all choice of $\mathrm{t}_{\mathrm{k}}, \mathrm{t}_{k}{ }^{\prime} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]$,

We have
$\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-\mathrm{A}\right|<\frac{\varepsilon}{8} \&\left|\sum_{k=1}^{n} f\left(\mathrm{t}_{k}{ }^{\prime}\right) \Delta \alpha_{k}-\mathrm{A}\right|<\frac{\varepsilon}{8}$ where $\mathrm{A}=\int_{a}^{b} f d \alpha$
Now,
$\left|\sum_{k=1}^{n}\left(f\left(t_{k}\right) f\left(\mathrm{t}_{k}{ }^{\prime}\right)\right) \Delta \alpha_{k}\right|=\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}+\sum_{k=1}^{n} f\left(\mathrm{t}^{\prime}{ }_{k}\right) \Delta \alpha_{k}\right|$

$$
\begin{aligned}
& =\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-\mathrm{A}+\mathrm{A}-\sum_{k=1}^{n} f\left(\mathrm{t}^{\prime}{ }_{k}\right) \Delta \alpha_{k}\right| \\
& \leq\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-\mathrm{A}\right|+\left|-\left(\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}-\mathrm{A}\right)\right| \\
& <\frac{\varepsilon}{8}+\frac{\varepsilon}{8}=\frac{\varepsilon}{4}
\end{aligned}
$$

Therefore, $\left|\sum_{k=1}^{n}\left(f\left(t_{k}\right) f\left(\mathrm{t}_{k}{ }^{\prime}\right)\right) \Delta \alpha_{k}\right|<\frac{\varepsilon}{4}$

Now,
$\mathrm{V}(\mathrm{b})=V_{\alpha}(\mathrm{a}, \mathrm{b})($ by 1$)$

$$
\begin{align*}
& =\sup \left\{\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|\right\} \\
& \geq \sum_{k=1}^{n}\left|\Delta \alpha_{k}\right| \tag{4}
\end{align*}
$$

(i.e.) $\mathrm{V}(\mathrm{b})>\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|$

By the property of supremum,
$\Rightarrow \mathrm{V}(\mathrm{b})-\frac{\varepsilon}{4 m}<\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|$
$\mathrm{V}(\mathrm{b})-\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|<\frac{\varepsilon}{4 m}$

Now, we note that $\Delta V_{k}-\left|\Delta \alpha_{k}\right| \geq 0$
Therefore,

$$
\begin{align*}
& \sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right]\left(\Delta V_{k}-\left|\Delta \alpha_{k}\right|\right) \leq \sum_{k=1}^{n}\left(m-(-m)\left(\Delta V_{k}-\left|\Delta \alpha_{k}\right|\right)\right. \\
&=2 \mathrm{~m}\left(\sum_{k=1}^{n} \Delta V_{k}-\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|\right) \\
&=2 \mathrm{~m}\left(\mathrm{~V}(\mathrm{~b})-\mathrm{V}(0)-\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|\right) \\
&=2 \mathrm{~m}\left(\mathrm{~V}(\mathrm{~b})-\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|\right) \\
&<2 \mathrm{~m} \frac{\varepsilon}{4 m}=\frac{\varepsilon}{2} \quad \quad \text { (by equation (5)) } \tag{6}
\end{align*}
$$

Therefore, $\sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right]\left(\Delta V_{k}-\left|\Delta \alpha_{k}\right|\right)<\frac{\varepsilon}{2}$
Let $\mathrm{A}(\mathrm{p})=\left\{\mathrm{k}: \Delta \alpha_{k} \geq 0\right\}$
$\& \quad \mathrm{~B}(\mathrm{p})=\left\{\mathrm{k}: \Delta \alpha_{k}<0\right\}$

Let $\mathrm{h}=\frac{\varepsilon}{4 v(b)}>0$
We know that, $M_{k}(f)-m_{k}(f)=\sup f(x)-\inf f(x), x \in\left[x_{k-1}, x_{k}\right]$

$$
\begin{aligned}
& =\sup f(x)-\sup (-f(x)) \\
& =\sup f(x)-\sup (f(y)), x, y \in\left[x_{k-1}, x_{k}\right]
\end{aligned}
$$

$M_{k}(f)-m_{k}(f)=\sup \left\{f(x)-f(y) ; x, y \in\left[x_{k-1}, x_{k}\right]\right.$
$M_{k}(f)-m_{k}(f) \geq f(x)-f(y)$
If $\mathrm{k} \in \mathrm{A}(\mathrm{p})$, choose $\mathrm{t}_{\mathrm{k}} \& \mathrm{t}_{k}{ }^{\prime}$ such that $\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})-\mathrm{h}<\mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{t}_{\mathrm{k}}{ }^{\prime}\right)$
$\Rightarrow \mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})<\mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right)-\mathrm{f}\left(\mathrm{t}_{k}{ }^{\prime}\right)+\mathrm{h}$
If, If $k \in B(p)$, choose $t_{k} \& t_{k}{ }^{\prime}$ such that $M_{k}(f)-m_{k}(f)-h<f\left(t_{k}^{\prime}\right)-f\left(t_{k}\right)$
$\Rightarrow \mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})<\mathrm{f}\left(\mathrm{t}_{k}{ }^{\prime}\right)-\mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right)+\mathrm{h}$
Now, $\sum_{k=1}^{n}\left(M_{k}(\mathrm{f})-m_{k}(\mathrm{f})\right)\left|\Delta \alpha_{k}\right|<\sum_{k \in A(p)}\left(\mathrm{f}\left(t_{k}\right)-\mathrm{f}\left(t_{k}^{\prime}\right)+\mathrm{h}\right)\left|\Delta \alpha_{k}\right|$

$$
\left.+\sum_{k \in B(p)} \mathrm{f}\left(\left(t_{k}^{\prime}\right)\right)-\mathrm{f}\left(t_{k}\right)+\mathrm{h}\right)\left|\Delta \alpha_{k}\right|
$$

$\left.=\sum_{k \in A(p)}\left(\mathrm{f}\left(t_{k}\right)-\mathrm{f}\left(t_{k}^{\prime}\right)+\mathrm{h}\right)\left|\Delta \alpha_{k}\right|+\sum_{k \in B(p)} \mathrm{f}\left(\left(t_{k}^{\prime}\right)\right)-\mathrm{f}\left(t_{k}\right)+\mathrm{h}\right)\left|\Delta \alpha_{k}\right|$

$$
+\sum_{k \in A(p)} h\left|\Delta \alpha_{k}\right|+\sum_{k \in A(p)} h\left|\Delta \alpha_{k}\right|
$$

$\left.=\sum_{k \in A(p)}\left(\mathrm{f}\left(t_{k}\right)-\mathrm{f}\left(t_{k}^{\prime}\right)\right) \Delta \alpha_{k}+\sum_{k \in B(p)} \mathrm{f}\left(\left(t_{k}^{\prime}\right)\right)-\mathrm{f}\left(t_{k}\right)\right) \Delta \alpha_{k}+\sum_{k=1}^{n} h .\left|\Delta \alpha_{k}\right|$
$=\sum_{k=1}^{n}\left(f\left(t_{k}\right)-f\left(t_{k}^{\prime}\right)\right) \Delta \alpha_{k}+\mathrm{h} \sum_{k=1}^{n}\left|\Delta \alpha_{k}\right|$
$<\frac{\varepsilon}{4}+h[v(b)] \quad$ (by equation (5) \& (4))
$<\frac{\varepsilon}{4}+\frac{\varepsilon}{4 . v(b)} . \mathrm{V}(\mathrm{b}) \quad$ (by equation (7))
$=\frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\frac{\varepsilon}{2}$
$\sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right]\left|\Delta \alpha_{k}\right|<\frac{\varepsilon}{2}$
Now,
$\sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right] \Delta v_{k}=\sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right]\left(\Delta v_{k}-\left|\Delta \alpha_{k}\right|+\left|\Delta \alpha_{k}\right|\right)$
$=\sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right]\left(\Delta v_{k}-\left|\Delta \alpha_{k}\right|\right)+\sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right]\left|\Delta \alpha_{k}\right|$
$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \quad$ (by equation (6) \& (7))
Therefore, $\sum_{k=1}^{n}\left[M_{k}(f)-m_{k}(f)\right] \Delta v_{k}<\varepsilon$

$$
\Rightarrow \sum_{k=1}^{n} M_{k}(f) \Delta v_{k}-\sum_{k=1}^{n} m_{k}(f) \Delta v_{k}<\varepsilon
$$

$\Rightarrow \mathrm{U}(\mathrm{P}, \mathrm{f}, \mathrm{v})-\mathrm{L}(\mathrm{P}, \mathrm{f}, \mathrm{v})<\varepsilon$
$\Rightarrow \mathrm{f} \in \mathrm{R}(\mathrm{V})$ on $[\mathrm{a}, \mathrm{b}]$

Theorem 3.3:

Let α be of bounded variations on [a, b] and assume that $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$. Then $\mathrm{f} \in \mathrm{R}(\alpha)$ on every subinterval $[c, d]$ of $[a, b]$

Proof:

Let α be a bounded variation on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{v}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathcal{R}$ such that
$\mathrm{V}(\mathrm{x})=\left\{\begin{array}{lr}0 & \text { if } x=a \\ v_{\alpha}(a, x) \text { if } \mathrm{a}<x \leq b\end{array}\right.$
Let $\mathrm{P}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1} \ldots \ldots \ldots \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\} \in \mathcal{P}(\mathrm{a}, \mathrm{b})$
Let $\varepsilon>0$ be given
Given $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
To prove: $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{c}, \mathrm{d}]$ of $[\mathrm{a}, \mathrm{b}]$
\therefore, α is of bounded variation on $[\mathrm{a}, \mathrm{b}], \alpha=\mathrm{V}-(\mathrm{V}-\alpha)$ where $\mathrm{V} \& \mathrm{~V}-\alpha$ are $\overline{7}$ on $[\mathrm{a}, \mathrm{b}]$
Then by Theorem 3.2,
$\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]=>\mathrm{f} \in \mathrm{R}(v) \& \mathrm{f} \in \mathrm{R}(\mathrm{V}-\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
$\Rightarrow \mathrm{f} \in \mathrm{R}(v) \& \mathrm{f} \in \mathrm{R}(\mathrm{V}-\alpha)$ on $[\mathrm{c}, \mathrm{d}] \quad$ since $(\alpha \& \mathrm{~V}-\alpha$ are \nearrow on $[\mathrm{a}, \mathrm{b}])$
$\Rightarrow \mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{c}, \mathrm{d}] \quad$ since $(\alpha=\mathrm{v}-(\mathrm{v}-\alpha)$
$\therefore \mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}] \Rightarrow \mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{c}, \mathrm{d}]$
Now,
We shall prove that Theorem when α is increasing on $[\mathrm{a}, \mathrm{b}]$.
Assume that $\mathrm{a}<\mathrm{c}<\mathrm{b}$
By Theorem 2.7. of integration by parts,
$\int_{a}^{d} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{d} f d \alpha \quad$ where $\mathrm{a} \leq c \leq d \leq b$
$\Rightarrow \int_{c}^{a} f d \alpha=\int_{a}^{d} f d \alpha-\int_{a}^{c} f d \alpha$
To prove: $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{c}, \mathrm{d}]$
(i.e.), To prove: ' f ' satisfies the Riemann condition w.r.to α on [c, d]
(i.e.), To prove: $\int_{c}^{d} f d \alpha$ exists.
(i.e.), To prove: $\int_{a}^{d} f d \alpha \& \int_{a}^{c} f d \alpha$ exist

Since, $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ of $[\mathrm{a}, \mathrm{b}]$
Given: $\varepsilon>0$, there exist a position P_{ε} on $[\mathrm{a}, \mathrm{b}]$ such that P is finer than P_{ε} implies $\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)$ $\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha)<\varepsilon$

Let $\Delta(\mathrm{p}, \mathrm{x})=\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha)$ on $[\mathrm{a}, \mathrm{x}]$
\therefore equation $(2) \Rightarrow \Delta(\mathrm{p}, \mathrm{b})<\varepsilon$.
Assume that $\mathrm{c} \in P_{\varepsilon}$
Let P_{ε}^{\prime} be a partition of P_{ε} on [a, c]
Let P^{\prime} be a partition finer than P_{ε}^{\prime} on $[\mathrm{a}, \mathrm{c}]$
(i.e.)., $P^{\prime} \supseteq P_{\varepsilon}^{\prime}$

Then $\mathrm{P}=P^{\prime} \cup P_{\varepsilon}^{\prime}$ Is a partition of $[\mathrm{a}, \mathrm{b}]$
(i.e.) P composed of the points of P^{\prime} along with those points of P_{ε} in $[\mathrm{a}, \mathrm{b}]$

From equation (3) \Rightarrow
$\varepsilon>\Delta(p, b)$
$=\Delta\left(P^{\prime}, c\right)+\Delta\left(P_{\varepsilon}, b\right)$
$>\Delta\left(\mathrm{P}^{\prime}, \mathrm{C}\right)$
Therefore, $\Delta\left(P^{\prime}, c\right)<\varepsilon$
(i.e.)., $\mathrm{U}\left(P^{\prime}, \mathrm{f}, \alpha\right)-\mathrm{L}\left(P^{\prime}, \mathrm{f}, \alpha\right)<\varepsilon$ on $[\mathrm{a}, \mathrm{c}]$
(i.e.)., f satisfies a Riemann condition on $[\mathrm{a}, \mathrm{c}] \& \int_{a}^{c} f d \alpha$ exists

Similarly, $\int_{c}^{d} f d \alpha$ exists
(i.e.) $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{c}, \mathrm{d}]$

Theorem 3.4:

Assume $\mathrm{f} \in \mathrm{R}(\alpha) \& \mathrm{~g} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, where $\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$. Define
$\mathrm{F}(\mathrm{x})=\int_{a}^{x} f(t) d \alpha(t)$ and $\mathrm{G}(\mathrm{x})=\int_{a}^{x} g(t) d \alpha(t)$ if $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$, then $\mathrm{f} \in \mathrm{R}(\mathrm{G})$,
$\mathrm{g} \in \mathrm{R}(\mathrm{F})$, and the product $\mathrm{f} \mathrm{g} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$, and we have
$\int_{a}^{b} f(x) g(x) d \alpha(x)=\int_{a}^{b} f(x) d G(x)=\int_{a}^{b} g(x) d F(x)$

Proof:

Let $\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{P}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots \ldots \ldots . \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\} \in \mathcal{P}[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{t}_{\mathrm{k}} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right] \& \Delta \alpha_{k}=\alpha\left(\mathrm{x}_{\mathrm{k}}\right)-\alpha\left(\mathrm{x}_{\mathrm{k}-1}\right)$
Let $\varepsilon>0$ be given
Assume that $\mathrm{f} \in R(\alpha) \& \mathrm{~g} \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
Define $\mathrm{F}(\mathrm{x})=\int_{a}^{x} f(t) d \alpha(t) \quad \& \mathrm{G}(\mathrm{x})=\int_{a}^{x} g(t) d \alpha(t)$ if $\mathrm{x} \in[a, b]$
To prove: $\mathrm{f} \in \mathrm{R}(\mathrm{G}), \mathrm{g} \in \mathrm{R}(\mathrm{F}), \mathrm{f} \mathrm{g} \in \mathrm{R}(\alpha)$
$\int_{a}^{b} f(x) g(x) d \alpha(x)=\int_{a}^{b} f(x) d G(x)=\int_{a}^{b} g(x) d F(x)$

Here given $\mathrm{f} \& \mathrm{~g} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
Then by theorem 2.33, f. $\mathrm{g} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
Now, To prove: $\mathrm{f} \in \mathrm{R}(\alpha) \& \int_{a}^{b} f(x) g(x) d \alpha(x)=\int_{a}^{b} f(x) d G(x)$
Let $\mathrm{M}_{\mathrm{g}}=\sup \{|\operatorname{g}(\mathrm{x})|: \mathrm{x} \in[\mathrm{a}, \mathrm{b}]\}$
Given $\mathrm{f} \in R(\alpha)$
\Rightarrow For all $\varepsilon>0$, there exit a partition P_{ε} such that P finer than P_{ε} implies $\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{P}, \mathrm{f}$, $\alpha)<\frac{\varepsilon}{M g} \ldots \ldots 1$

For any partition P
$\mathrm{S}(\mathrm{P}, \mathrm{f}, \mathrm{G})=\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \mathrm{G}_{\mathrm{k}}$

$$
\begin{align*}
& =\sum_{k=1}^{n} f\left(t_{k}\right)\left[\mathrm{G}\left(\mathrm{x}_{\mathrm{k}}\right)-\mathrm{G}\left(\mathrm{x}_{\mathrm{k}-1}\right)\right] \\
& =\sum_{k=1}^{n} f\left(t_{k}\right)\left[\int_{a}^{x_{k}} g(t) d \alpha(t)-\int_{a}^{x_{k-1}} g(t) d \alpha(t)\right] \\
& =\sum_{k=1}^{n} f\left(t_{k}\right)\left[\int_{a}^{x_{k}} g(t) d \alpha(t)+\int_{x_{k-1}}^{a} g(t) d \alpha(t)\right] \\
& =\sum_{k=1}^{n} f\left(t_{k}\right)\left[\int_{x_{k-1}}^{x_{k}} g(t) d \alpha(t)\right. \tag{2}
\end{align*}
$$

$\mathrm{S}(\mathrm{P}, \mathrm{f}, \mathrm{G})=\sum_{k=1}^{n} f\left(t_{k}\right)\left[\int_{x_{k-1}}^{x_{k}} g(t) d \alpha(t)\right.$
We can write, $\int_{a}^{b} f(x) g(x) d \alpha(x)=\sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(t) g(t) d \alpha(t)$
Equation (2) - (3) $\Rightarrow \mathrm{S}(\mathrm{P}, \mathrm{f}, \mathrm{G})-\int_{a}^{b} f(x) g(x) d \alpha(x)$
$=\sum_{k=1}^{n} f\left(t_{k}\right)\left[\int_{x_{k-1}}^{x_{k}} g(t) d \alpha(t)-\sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(t) g(t) d \alpha(t)\right.$
$=\sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}}\left[f\left(t_{k}\right)-\mathrm{f}(\mathrm{t})\right] \mathrm{g}(\mathrm{t}) \mathrm{d} \alpha(\mathrm{t})$
$\therefore\left|\mathrm{S}(\mathrm{P}, \mathrm{f}, \mathrm{G})-\int_{a}^{b} f(x) g(x) d \alpha(x)\right|=\left|\sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}}\left[f\left(t_{k}\right)-\mathrm{f}(\mathrm{t})\right] \mathrm{g}(\mathrm{t}) \mathrm{d} \alpha(\mathrm{t})\right|$

$$
\begin{gathered}
\leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}}\left|f\left(t_{k}\right)-\mathrm{f}(\mathrm{t})\right||\mathrm{g}(\mathrm{t})||\mathrm{d} \alpha(\mathrm{t})| \\
=\mathrm{M}_{\mathrm{g}} \int_{x_{k-1}}^{x_{k}}\left[M_{k}(f)-m_{k}(f)\right] \mathrm{d} \alpha(t)
\end{gathered}
$$

$$
\begin{aligned}
& \\
& =\mathrm{M}_{\mathrm{g}}\left\{\int_{a}^{b} M_{k}(f) d \alpha(t)-\int_{a}^{b} m_{k}(f) d \alpha(t)\right\} \\
& =\mathrm{M}_{\mathrm{g}}\{\mathrm{U}(\mathrm{P}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{P}, \mathrm{f}, \alpha)\} \\
& \left.<\mathrm{M}_{\mathrm{g}} \frac{\varepsilon}{M_{g}} \quad \text { (by } 1\right) \\
& =\varepsilon
\end{aligned}
$$

$\therefore\left|\mathrm{S}(\mathrm{P}, \mathrm{f}, \mathrm{G})-\int_{a}^{b} f(x) g(x) d \alpha(x)\right|<\varepsilon$
$\therefore \mathrm{f} \in \mathrm{R}(\mathrm{G}) \& \int_{a}^{b} f(x) d G(x)=\int_{a}^{b} f(x) g(x) d \alpha(x)$
Similarly, we can prove that $\mathrm{f} \in \mathrm{R}(\mathrm{F}) \& \int_{a}^{b} f(x) d F(x)=\int_{a}^{b} f(x) g(x) d \alpha(x)$

Sufficient conditions for Existence of Riemann - Stieltjes integrals

Theorem 3.5:

If ' f ' is continuous on $[a, b]$ and if ' α ' is of bounded variation on[a,b] then $f \in R(\alpha)$ on $[a, b]$

Proof:

Given f is continuous on $[\mathrm{a}, \mathrm{b}$]
f is bounded on [a, b]
Given ' α ' is of bounded variation on $[\mathrm{a}, \mathrm{b}]$ then
Let $\mathrm{V}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R}$ such that
$\mathrm{V}(\mathrm{x})=\left\{\begin{array}{cl}0 & \text { if } x=a \\ v_{\alpha}(a, x) & \text { if } a<x \leq b\end{array}\right.$
Let $\mathrm{P}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\} \in \mathcal{P}[a, b]$
Let $\mathrm{t}_{\mathrm{k}} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right] \& \Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$
Let $\varepsilon>0$ be given
To prove: $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$
[$\therefore \alpha$ is of bounded variation on[a,b] , then $\alpha=v-(v-\alpha)$ where $\mathrm{v} \& \mathrm{v}-\alpha$ are $\overline{\mathrm{on}}[\mathrm{a}, \mathrm{b}]$
$\therefore \mathrm{f} \in \mathrm{R}(\mathrm{v}) \& \mathrm{f} \in \mathrm{R}(\mathrm{v}-\alpha)$ on $[a, b]$
$\Rightarrow \mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$]
now, we shall prove that theorem when α フon $[\mathrm{a}, \mathrm{b}]$
(i.e.) $\mathrm{a}<\mathrm{b} \Rightarrow \alpha(a) \leq \alpha(b)$
suppose, $\alpha(a)=\alpha(b)$ then,
$\Delta \alpha_{k}=0$
$\therefore \mathrm{U}(\mathrm{p}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{p}, \mathrm{f}, \alpha)=0<\varepsilon$
$\therefore \mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$
suppose, $\alpha(a)<\alpha(b)$
Given f is continuous on $[\mathrm{a}, \mathrm{b}$]
$\Rightarrow \mathrm{f}$ is uniformly continuous on $[\mathrm{a}, \mathrm{b}]$
\Rightarrow given $\varepsilon>0$ there exists $\delta>0$ such that
$|\mathrm{x}-\mathrm{y}|<\delta \quad \Rightarrow \quad|f(\mathrm{x})-f(\mathrm{y})|<\varepsilon / A$
Where, $\quad \mathrm{A}=2[\alpha(\mathrm{~b})-\alpha(\mathrm{a})]$
Let P_{ε} be a partition of $[\mathrm{a}, \mathrm{b}]$ such that $\left\|P_{\varepsilon}\right\|<\delta$
If P is finer than P_{ε}, then $\|P\|<\delta$
$\therefore \left\lvert\, \mathrm{f}\left(\mathrm{t}_{\mathrm{k})}-\mathrm{f}\left(t_{k}^{\prime}\right) \left\lvert\,<\frac{\varepsilon}{2(\alpha(b)-\alpha(a))} \quad\right., \quad \mathrm{t}_{\mathrm{k}}, t_{k}^{\prime} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right.\right.$
Now, $\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})=\sup \left\{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y}): \mathrm{x}, \mathrm{y} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right\}$

$$
\begin{aligned}
& =\mid \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}-\mathrm{f}\left(t_{k}^{\prime}\right) \mid \text { there exists, } \mathrm{t}_{\mathrm{k}}, t_{k}^{\prime} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right. \\
& <\frac{\varepsilon}{2(\alpha(b)-\alpha(a))}
\end{aligned}
$$

$\therefore \mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})<\frac{\varepsilon}{2(\alpha(b)-\alpha(a))}$
$\Rightarrow \sum_{k=1}^{n}\left[M_{k}(\mathrm{f})-m_{k}(\mathrm{f})\right] \Delta \alpha_{k}<\frac{\varepsilon}{2(\alpha(b)-\alpha(a))} \sum_{k=1}^{n} \Delta \alpha_{k}$
$\Rightarrow \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}-\sum_{k=1}^{n} m_{k}(f) \Delta \alpha_{k}<\frac{\varepsilon}{2(\alpha(b)-\alpha(a))}(\alpha(b)-\alpha(a))$
$\therefore \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}-\sum_{k=1}^{n} m_{k}(f) \Delta \alpha_{k}<\frac{\varepsilon}{2}<\varepsilon$
(i.e.) $\mathrm{U}(\mathrm{p}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{p}, \mathrm{f}, \alpha)<\varepsilon$
$\therefore \mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$

Theorem 3.6:

Each of the following conditions is sufficient for the existence of the Riemann integral $\int_{a}^{b} f(x) d x$:
a) f is continuous on $[a, b]$
b) f is of bounded variation on $[a, b]$

Proof:

Let f be a function defined on $[a, b]$
a) f is continuous on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x$ exists

Given f is continuous on $[a, b]$
Let $\alpha(\mathrm{x})=\mathrm{x}$
$\Rightarrow \alpha$ is of bdd variation on $[a, b]$
\therefore By theorem 3.5 , we get
$\int_{a}^{b} f(x) d x$ exists
(i.e.) $\int_{a}^{b} f(x) d x$ exists
b) ' f ' is of bounded variation on $[a, b] \Rightarrow \int_{a}^{b} f(x) d x$ exists
$\because \alpha(x)=x, \alpha$ is continuous on $[a, b]$
\therefore By theorem 3.5,
$\int_{a}^{b} \alpha(x) d f(x)$ exists
By theorem 2.9
$\int_{a}^{b} f(x) d \alpha(x)$ exists
(i.e.) $\int_{a}^{b} f(x) d x$ exists

Note:

By Theorem 2.9, a second sufficient condition can be obtained by interchanging ' f ' \& ' α ' in the hypothesis.
(i.e.) If ' α ' is a continuous on $[a, b]$ and if ' f ' is of bounded variation on, then $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$

Necessary conditions for Existence of Riemann - stieltjes integrals

Theorem 3.7:

Assume that α フon $[a, b]$ and let $\mathrm{a}<\mathrm{c}<\mathrm{b}$. Assume further that both ' α ' and ' f ' are discontinuous from the right at $\mathrm{x}=\mathrm{c}$; that is, assume that there exists an $\varepsilon>0$ such that for every $\delta>0$ there are values of x and y in the interval ($\mathrm{c}, \mathrm{c}+\delta$) for which $|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})| \geq \varepsilon$ and $|\alpha(\mathrm{y})-\alpha(\mathrm{c})| \geq \varepsilon$. Then the integral $\int_{a}^{b} f(x) d \alpha(x)$ can not exists. The integral also fails to exist if ' α ' and ' f ' are discontinuous from the left at ' c '.

Proof:

Let $\mathrm{p}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\}$ be a partition of $[a, b]$ containing ' c ' as a point of subdivision.
Let on α フon $[a, b]$
Let $\mathrm{a}<\mathrm{c}<\mathrm{b}$
Given ' α ' and ' f ' are both discontinuous from the right at $\mathrm{x}=\mathrm{c}$.
(i.e.) there exists $\varepsilon>0$: $\forall \delta>0 \mathrm{x}, \mathrm{y} \in(\mathrm{c}, \mathrm{c}+\delta)$ for which
$|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})| \geq \varepsilon$ and $|\alpha(\mathrm{y})-\alpha(\mathrm{c})| \geq \varepsilon$
If the $\mathrm{i}^{\text {th }}$ subinterval has ' c ' as its left end points, then
$\mathrm{U}(\mathrm{p}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{p}, \mathrm{f}, \alpha)=\sum_{k=1}^{n}\left[\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})\right] \Delta \alpha_{k}$

$$
=\sum_{k=1}^{n}\left[\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})\right]\left[\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha\left(\mathrm{x}_{\mathrm{i}-1}\right)\right]
$$

$$
\begin{align*}
& \quad=\sum_{k=1}^{n}\left[\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})\right]\left[\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(c)+\alpha(c)-\alpha\left(\mathrm{x}_{\mathrm{i}-1}\right)\right] \\
& \geq \sum_{k=1}^{n}\left[\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})\right]\left[\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(\mathrm{c})\right] \\
& \geq \sum_{k=1}^{n}\left[\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})\right]\left[\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(\mathrm{c})\right] \\
& \therefore \mathrm{U}(\mathrm{p}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{p}, \mathrm{f}, \alpha) \geq \sum_{k=1}^{n}\left[\mathrm{M}_{\mathrm{k}}(\mathrm{f})-\mathrm{m}_{\mathrm{k}}(\mathrm{f})\right]\left[\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(\mathrm{c})\right] \ldots \ldots . .(2)
\end{align*}
$$

Now,

$$
\begin{align*}
& M_{i}(f)-m_{i}(f)= \sup f(x)-\inf f(x) \quad, x \in\left[x_{i-1}, x_{i}\right] \\
&=\sup f(x)-\sup (-f(x)) \\
&=\sup f(x)-\sup f(y) \\
&=\sup (f(x)-f(y)) \\
& \geq f(x)-f(c): x, y \in\left[x_{i-1}, x_{i}\right] \\
& \geq \varepsilon \\
& \therefore M_{i}(f)-m_{i}(f) \geq \varepsilon \quad \ldots \ldots . .(3) \tag{3}
\end{align*}
$$

Now,
If ' c ' is a common discontinuity from the right, we can assume that the point x_{i} is chosen so that

$$
\begin{equation*}
\alpha\left(\mathrm{x}_{\mathrm{i}}\right)-\alpha(\mathrm{c}) \geq \varepsilon \tag{4}
\end{equation*}
$$

\therefore equation $(2) \Rightarrow \mathrm{U}(\mathrm{p}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{p}, \mathrm{f}, \alpha) \geq \varepsilon . \varepsilon$

$$
=\varepsilon^{2}
$$

(i.e.) $\mathrm{U}(\mathrm{p}, \mathrm{f}, \alpha)-\mathrm{L}(\mathrm{p}, \mathrm{f}, \alpha) \geq \varepsilon^{2}$
\therefore Riemann's condition is not satisfied
$\therefore \int_{a}^{b} f(x) d \alpha(x)$ Cannot exists.
Similarly, if ' α ' and ' f ' are discontinuous from the left at ' c ' then we can prove that $\int_{a}^{b} f(x) d \alpha(x)$ doesn't exists.

Mean - value Theorems for Riemann - stieltjes Integrals

Theorem 3.8: (First Mean - value Theorem for R.s Integral)

Assume that α フon and let $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$. Let $\mathrm{M} \& \mathrm{~m}$ denote, respectively, the sup and inf of the set $\{\mathrm{f}(\mathrm{x}): \mathrm{x} \in[a, b]\}$. Then there exists a real number ' c ' satisfying $\mathrm{m} \leq \mathrm{c} \leq \mathrm{M}$ such that $\int_{a}^{b} f(x) d \alpha(x)=c \int_{a}^{b} d \alpha(x)=\mathrm{c}[\alpha(b)-\alpha(a)]$

In particular, if ' f ' is continuous on $[a, b]$, then $\mathrm{c}=\mathrm{f}\left(\mathrm{x}_{0}\right)$ in

Proof:

Assume that on $\alpha \nearrow$ on $[a, b]$
Let $\mathrm{M}=\sup \{\mathrm{f}(\mathrm{x}): \mathrm{x} \in[a, b]\} \& \mathrm{~m}=\inf \{\mathrm{f}(\mathrm{x}): \mathrm{x} \in[a, b]\}$
Let $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$
To prove: there exists $c \in R$ satisfying $m \leq c \leq M$ such that
$\int_{a}^{b} f(x) d \alpha(x)=c \int_{a}^{b} d \alpha(x)=\mathrm{c}[\alpha(b)-\alpha(a)]$
case (i): $\alpha(\mathrm{a})=\alpha$ (b)
$\Rightarrow \alpha$ is constant on $[a, b]$
$\Rightarrow \int_{a}^{b} f(x) d \alpha(x)=0$
Also $\alpha(b)-\alpha(a)=0$

$$
\int_{a}^{b} f(x) d \alpha(x)=c \int_{a}^{b} d \alpha(x)=\mathrm{c}[\alpha(b)-\alpha(\mathrm{a})]
$$

Case(ii): α (a)< α (b)
Let $\mathrm{P}=\left\{\mathrm{a}=\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\} \in \mathcal{P}[a, b]$
Clearly, $\mathrm{m} \leq \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}\right) \leq \mathrm{M} \quad \forall \mathrm{t}_{\mathrm{k}} \in\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]$

$$
\begin{aligned}
& \Rightarrow \sum_{k=1}^{n} m \Delta \alpha_{k} \leq \sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k} \leq \sum_{k=1}^{n} M \Delta \alpha_{k} \\
& \Rightarrow m \sum_{k=1}^{n} \Delta \alpha_{k} \leq S(p, f, \alpha) \leq M \sum_{k=1}^{n} \Delta \alpha_{k} \\
& \Rightarrow \mathrm{~m}[\alpha(b)-\alpha(\mathrm{a})] \leq \mathrm{S}(\mathrm{p}, \mathrm{f}, \alpha) \leq \mathrm{M}[\alpha(b)-\alpha(\mathrm{a})] \\
& \Rightarrow \mathrm{m}[\alpha(b)-\alpha(\mathrm{a})] \leq \int_{a}^{b} f(x) d \alpha(x) \leq \mathrm{M}[\alpha(b)-\alpha(\mathrm{a})]
\end{aligned}
$$

$\Rightarrow \mathrm{m} \leq \frac{1}{\alpha(b)-\alpha(\mathrm{a})} \int_{a}^{b} f(x) d \alpha(x) \leq \mathrm{M}$
$\Rightarrow \mathrm{m} \leq \frac{\int_{a}^{b} f(x) d \alpha(x)}{\int_{a}^{b} d \alpha(x)} \leq \mathrm{M}$
(i.e.) $\mathrm{c}=\frac{\int_{a}^{b} f(x) d \alpha(x)}{\int_{a}^{b} d \alpha(x)}$
$\Rightarrow \int_{a}^{b} f(x) d \alpha(x)=c \int_{a}^{b} d \alpha(x)=\mathrm{c}[\alpha(b)-\alpha(\mathrm{a})]$
Now, Here ' f ' is continuous on $[a, b]$ and $\mathrm{m} \leq \mathrm{c} \leq \mathrm{M}$
By intermediate Theorem for continuous functions,
there exists $\mathrm{x}_{0} \in[a, b]$ such that $\mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{c}$
\therefore equation (1) $\Rightarrow \int_{a}^{b} f(x) d \alpha(x)=f\left(x_{0}\right) \int_{a}^{b} d \alpha(x)=f\left(x_{0}\right)[\alpha(b)-\alpha(a)]$ for some x_{0} $\in[a, b]$

Theorem 3.9: (Second Mean -value Theorem for R-S integral)

Assume that α is continuous and that $\mathrm{f} \nearrow$ on $[a, b]$ then there exists a point x_{0} in $[a, b]$ in such that $\int_{a}^{b} f(x) d \alpha(x)=f(a) \int_{a}^{b} d \alpha(x)+f(b) \int_{a}^{b} d \alpha(x)$

Proof:

Given ' α ' is continuous and $\mathrm{f} \nearrow$ on $[a, b]$
by first mean value Theorem 3.8, we get, there exists $\mathrm{x}_{0} \in[a, b]$ such that

$$
\begin{aligned}
& \int_{a}^{b} \alpha(x) d f(x)=\alpha\left(x_{0}\right)[f(b)-f(a)] \ldots \ldots . . \\
& \begin{aligned}
& \int_{a}^{b} f(x) d \alpha(x)+\int_{a}^{b} \alpha(x) d f(x)=f(b) \alpha(b)-f(a) \alpha(a) \\
& \Rightarrow \int_{a}^{b} f(x) d \alpha(x)=f(b) \alpha(b)-f(a) \alpha(a)-\int_{a}^{b} \alpha(x) d f(x) \\
&=\left.f(b) \alpha(b)-f(a) \alpha(a)-\alpha\left(x_{0}\right)[f(b)-f(a)] \quad \text { (by } 1\right) \\
&= f(b) \alpha(b)-f(a) \alpha(a)-\alpha\left(x_{0}\right) f(b)+\alpha\left(x_{0}\right) f(a) \\
&=f(a)\left[\alpha\left(x_{0}\right)-\alpha(a)\right]+f(b)\left[\alpha(b)-\alpha\left(x_{0}\right)\right]
\end{aligned}
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d \alpha(x)=f(a) \int_{a}^{x_{0}} d \alpha(x)+f(b) \int_{x_{0}}^{b} d \alpha(x)
$$

The integral as a function of the interval

Note:

If $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[a, b]$ and if ' α ' is of bounded variation then the integral $\int_{a}^{x} f d \alpha$ exists $\mathrm{x} \in[a, b]$

Theorem 3.10:

Let α be of bounded variation on $[a, b]$ and assume that $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$. Define F by equation $\mathrm{F}(\mathrm{x})=\int_{a}^{x} f d \alpha$ if $\mathrm{x} \in[a, b]$

Then we have
(i) F is of bounded variation on $[a, b]$
(ii) Every point of continuity of ' α ' is also a point of continuity of F
(iii) If α 万on $[a, b]$, the derivative $\mathrm{F}^{\prime}(\mathrm{x})$ exists at each point x in (a, b) where $\alpha^{\prime}(\mathrm{x})$ exists and where f is continuous. For such x , we have $\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \alpha^{\prime}(\mathrm{x})$

Proof:

Given, α be of bounded variation on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
Define ' F ' by the equation $\mathrm{F}(\mathrm{x})=\int_{a}^{x} f d \alpha$ if $\mathrm{x} \in[a, b]$
(i)To Prove; F is of bounded variation on $[a, b]$
(i.e.) To prove: $\sum_{k=1}^{n}\left|\Delta F_{k}\right| \leq M \quad \mathrm{M}>0$
(i.e.)To prove: $\sum_{k=1}^{n}\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right| \leq M \quad \mathrm{M}>0$

Assume that α フon $[a, b]$
Given, α is of bdd variation on [a,b]
$\sum_{k=1}^{n}\left|\Delta \alpha_{k}\right| \leq N \quad \mathrm{~N}>0$
$\sum_{k=1}^{n}\left|\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right| \leq N \quad \mathrm{~N}>0$
Let $m=\inf \{f(x): x \in[a, b]\} \& M=\sup \{f(x): x \in[a, b]\}$
$\because \alpha$ गon $[a, b]$ and $\mathrm{f} \in \mathrm{R}(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ by the first mean value theorem 3.8 we get, There exists a real number ' c ' satisfying $m \leq c \leq M$
such that $\int_{a}^{b} f(x) d \alpha(x)=\mathrm{c}[\alpha(b)-\alpha(\mathrm{a})]$
If $x_{k-1} \neq x_{k}$, then $\int_{x_{k-1}}^{x_{k}} f(x) d \alpha(x)=c\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right]$
$\Rightarrow \int_{a}^{x_{k}} f(x) d \alpha(x)-\int_{a}^{x_{k-1}} f(x) d \alpha(x)=c\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right]$
$\Rightarrow F\left(x_{k}\right)-F\left(x_{k-1}\right)=c\left[\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right]$
$\Rightarrow \sum_{k=1}^{n}\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|=C \sum_{k=1}^{n}\left|\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)\right|$
$\leq C . N \quad$ (by equation (1))
$=\mathrm{M} \quad$ where $\mathrm{M}=\mathrm{C} . \mathrm{N}$
$\therefore \sum_{k=1}^{n}\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right| \leq M$
$\therefore \mathrm{F}$ is of bounded variation on $[a, b]$
(ii) Every point of continuity of ' α ' is also a point of continuity of F

Let ' α ' be continuous at x_{0}
Let $\varepsilon>0$ be given
To Prove: ' F ' is continuous at x_{0}
$\because ' \alpha$ ' is continuous at x_{0},
Given $\varepsilon>0$, there exists $\delta>0$ such that
$\left|\mathrm{x}-\mathrm{x}_{0}\right|<\delta \quad \Rightarrow \quad\left|\alpha(\mathrm{x})-\alpha\left(\mathrm{x}_{0}\right)\right|<\varepsilon / c$
Now by theorem 3.8,
$\int_{x_{0}}^{x} f(x) d \alpha(x)=\mathrm{c}\left[\alpha(x)-\alpha\left(x_{0}\right)\right]$
$\Rightarrow \int_{a}^{x} f(x) d \alpha(x)-\int_{a}^{x_{0}} f(x) d \alpha(x)=\mathrm{c}\left[\alpha(x)-\alpha\left(x_{0}\right)\right]$
$\Rightarrow \mathrm{F}(\mathrm{x})-\mathrm{F}\left(\mathrm{x}_{0}\right)=c\left[\alpha(x)-\alpha\left(x_{0}\right)\right]$
$\Rightarrow\left|\mathrm{F}(\mathrm{x})-\mathrm{F}\left(\mathrm{x}_{0}\right)\right|=c\left|\alpha(x)-\alpha\left(x_{0}\right)\right|$

$$
<\mathrm{c} . \varepsilon / c \quad(\text { by equation }(2))
$$

$\therefore\left|\mathrm{F}(\mathrm{x})-\mathrm{F}\left(\mathrm{x}_{0}\right)\right|<\varepsilon$
$\therefore\left|\mathrm{x}-\mathrm{x}_{0}\right|<\delta \quad\left|F(\mathrm{x})-F\left(\mathrm{x}_{0}\right)\right|<\varepsilon$
$\therefore \mathrm{F}$ is continuous at x_{0}
\therefore Every point of continuity of ' α ' is also a point of continuity of F
(iii)Given: α フon $[a, b] \& \alpha^{\prime}(\mathrm{x})$ exists $\&$ ' f ' is continuous on $[\mathrm{a}, \mathrm{b}]$

To Prove: $F^{\prime}(x)$ exists at each point x in (a, b)

Let $\varepsilon>0$ be given

Let $\mathrm{x}_{0} \in(\mathrm{a}, \mathrm{b})$
$\Rightarrow \alpha^{\prime}(\mathrm{x})$ exists
$\Longrightarrow \lim _{x \rightarrow x_{0}} \frac{\alpha(x)-\alpha\left(x_{0}\right)}{x-x_{0}}$ exists.

From equation (3) we have $\mathrm{F}(\mathrm{x})-\mathrm{F}\left(\mathrm{x}_{0}\right)=c\left[\alpha(x)-\alpha\left(x_{0}\right)\right]$
$\Rightarrow \frac{\mathrm{F}(\mathrm{x})-\mathrm{F}\left(x_{0}\right)}{x-x_{0}}=\frac{c\left[\alpha(x)-\alpha\left(x_{0}\right)\right]}{x-x_{0}}$
$\underset{x \rightarrow x_{0}}{\Rightarrow} \frac{\lim (\mathrm{x})-\mathrm{F}\left(x_{0}\right)}{x-x_{0}}=c . \lim _{x \rightarrow x_{0}} \frac{\left[\alpha(x)-\alpha\left(x_{0}\right)\right]}{x-x_{0}}$
$\Rightarrow \mathrm{F}^{\prime}\left(\mathrm{x}_{0}\right)=\mathrm{c} \cdot \alpha^{\prime}\left(\mathrm{x}_{0}\right)$
$\because \alpha^{\prime}\left(\mathrm{x}_{0}\right)$ exists, $\Rightarrow \mathrm{F}^{\prime}\left(\mathrm{x}_{0}\right)$ also exists.

Here f is continuous on [a, b]

Then by intermediate value theorem,

There exists $\mathrm{x}_{0} \in[a, b]$ such that $\mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{c}$
\therefore From equation $(4) \Longrightarrow F^{\prime}\left(\mathrm{x}_{0}\right)=$ c. $\alpha^{\prime}\left(\mathrm{x}_{0}\right)$

$$
\Rightarrow \mathrm{F}^{\prime}\left(x_{0}\right)=\mathrm{f}\left(x_{0}\right) \alpha^{\prime}\left(\mathrm{x}_{0}\right)
$$

$\because \mathrm{x}_{0}$ is arbitrary we get
$\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \alpha^{\prime}(\mathrm{x}), \mathrm{x} \in(\mathrm{a}, \mathrm{b})$

Theorem 3.11:

If f is continuous on $[\mathrm{a}, \mathrm{b}] \& \mathrm{~F}(\mathrm{x})=\int_{a}^{x} f(x) d x$ then $\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ on $[\mathrm{a}, \mathrm{b}]$

Proof:

Given, ' f ' is continuous on $[\mathrm{a}, \mathrm{b}] \& \mathrm{~F}(\mathrm{x})=\int_{a}^{x} f(x) d x$.
From part (iii) of theorem 3.10, we get
$\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \alpha^{\prime}(\mathrm{x})$
Let $\alpha(\mathrm{x})=\mathrm{x}$
$\Rightarrow \alpha^{\prime}(\mathrm{x})=1 \& \quad \alpha$ フon $[a, b]$
$\therefore(1) \Rightarrow F^{\prime}(x)=f(x) .1$
$\Rightarrow \mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ on $[\mathrm{a}, \mathrm{b}]$

Theorem 3.12:

[Conversation of Riemann integral of a Product of functions into R-S integral]
If $f \in R \& g \in R$ on $[\mathrm{a}, \mathrm{b}]$, let $\mathrm{F}(\mathrm{x})=\int_{a}^{x} f(t) d t, \mathrm{G}(\mathrm{x})=\int_{a}^{x} g(t) d t$ if $x \in[a, b]$. Then $\mathrm{E} \& \mathrm{G}$ are continuous functions of bounded variation on [a,b]. Also $f \in R(G) \& g \in R(F)$ on [a,b], and we have $\int_{a}^{b} f(t) g(x) d x=\int_{a}^{b} f(t) d G(x)=\int_{a}^{b} g(x) d F(x)$

Proof:
Let $f \in R \& g \epsilon R$ on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{F}(\mathrm{x})=\int_{a}^{x} f(t) d t \& \int_{a}^{x} g(t) d t$ if $x \in[a, b]$
Let $\alpha(x)=x$
Assume that $\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$

Then by theorem 3.10 (i)\& (ii) we get, $\mathrm{F} \& \mathrm{G}$ are continuous functions of bounded variation on $[\mathrm{a}, \mathrm{b}]$

Also by Theorem 3.4, we get, $f \in R(G) \& g \epsilon R(F)$ on $[\mathrm{a}, \mathrm{b}] \&$

$$
\int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} f(x) d G(x)=\int_{a}^{b} g(x) d F(x)
$$

Second Fundamental Theorem of Integral Calculus

Theorem 3.13: [Second Fundamental Theorem of integral calculus]

Assume that $f \in R$ on $[\mathrm{a}, \mathrm{b}]$. Let g be a function defined on $[\mathrm{a}, \mathrm{b}]$ such that the derivative g^{\prime} exists in (a,b) and has the value $g^{\prime}(x)=f(x) \forall x \in(a, b)$. At the end points assume that $g(a+)$ and $g(b-)$ exist and satisfy $g(a)-g(a+)=g(b)-g(b-)$. Then we have $\int_{a}^{b} f(x) d x=\int_{a}^{b} g^{I}(x) d x=g(b)-g(a)$.

Let $\mathrm{P}=\left\{\mathrm{a}=x_{o}, x_{1}, \ldots, x_{n}\right\} \in p[a, b]$
$\therefore g$ is continuous on $[\mathrm{a}, \mathrm{b}] \& g^{\prime}$ exists in $(\mathrm{a}, \mathrm{b}) \&$ by Mean-Value Theorem,
$g\left(x_{k}\right)-g\left(x_{k-1}\right)=g^{\prime}\left(x_{k}\right) .\left(x_{k}-x_{k-1}\right) \forall t_{k} \epsilon\left(x_{k-1}-x_{k}\right)$
For every partition of $[\mathrm{a}, \mathrm{b}]$ we can write

$$
\begin{aligned}
& g(b)-g(a)=\sum_{k=1}^{n}\left[g\left(x_{k}\right)-g\left(x_{k-1}\right)\right] \\
& =\sum_{k=1}^{n} g^{\prime}\left(t_{k}\right) \cdot\left(x_{k}-x_{k-1}\right) \quad(\text { by } 1) \\
& =\sum_{k=1}^{n} g^{\prime}\left(t_{k}\right) \cdot \Delta x_{k} \\
& =\sum_{k=1}^{n} f\left(t_{k}\right) \cdot \Delta x_{k} \\
& \therefore g(b)-g(a)=\sum_{k=1}^{n} f\left(t_{k}\right) \cdot \Delta x_{k}
\end{aligned}
$$

Given $f \in R \Rightarrow$ Q $A \in \mathbb{R} \ni: \forall \varepsilon>0 p_{\varepsilon}$ of $[\mathrm{a}, \mathrm{b}] \ni: \forall \mathrm{p}$ finer than $p_{\varepsilon} \& t_{k} \in\left[x_{k-1}, x_{k}\right]$, we have $|\mathrm{S}(\mathrm{P}, \mathrm{f})-\mathrm{A}|<\varepsilon$ where $\mathrm{A}=\int_{a}^{b} f(x) d x$
$\Rightarrow\left|\sum_{k=1}^{n} f\left(t_{k}\right) \cdot \Delta x_{k}-\int_{a}^{b} f(x) d x\right|<\varepsilon$
$\Rightarrow\left|g(b)-g(a)-\int_{a}^{b} f(x) d x\right|<\varepsilon$
$\Rightarrow\left|\int_{a}^{b} f(x) d x-(g(b)-g(a))\right|<\varepsilon$
$\Rightarrow \int_{a}^{b} f(x) d x=g(b)-g(a)$
$\Rightarrow \int_{a}^{b} f(x) d x=\int_{a}^{b} g^{\prime}(x) d x=g(b)-g(a)$

Theorem 3.14:

Assume $f \epsilon R$ on $[\mathrm{a}, \mathrm{b}]$. let α be a function which is continuous on $[\mathrm{a}, \mathrm{b}]$ and whose derivative α^{\prime} is Riemann integrable on [a, b]. Then the following integrals exist and are equal $\int_{a}^{b} f(x) d \alpha(x)=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.

Proof:

By the Second Fundamental Theorem we get,
$\alpha(x)-\alpha(a)=\int_{a}^{b} \alpha^{\prime}(t) d t \forall x \in[a, b]$
By Theorem 3.12 we get,
$\int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} f(x) d G x$
Where $\mathrm{G}(\mathrm{x})=\int_{a}^{x} g(t) d t$
Let $g=\alpha^{\prime}$
Then $\mathrm{G}(x)=\int_{a}^{b} \alpha^{\prime}(t) d t$
$\Rightarrow G(x)=\alpha(x)-\alpha(a)$
$\Rightarrow d G(x)=d \alpha(x)-d \alpha(a)$
$\Rightarrow d G(x)=d \alpha(x)-0$
$\Rightarrow d G(x)=d \alpha(x)$
\therefore equation (2) becomes $\int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} f(x) d G x$

$$
\int_{a}^{b} f(x) \alpha^{\prime}(x) d x=\int_{a}^{b} f(x) d \alpha(x)
$$

Change of Variance

Theorem 3.15: [(Change of Variable in a Riemann integral)]

Assume that g has a continuous derivative g^{\prime} on the interval $[\mathrm{c}, \mathrm{d}]$. Let f be continuous on $g([c, d])$ and define F by the equation $F(x)=\int_{g(c)}^{x} f(t) d t$ if $x \in g([c, d])$. Then for each x in [$\mathrm{c}, \mathrm{d}]$ the integral $\int_{c}^{x}[g(t)] g^{\prime}(t) d t$ exists and has the value $F[g(x)]$ in particular. We have $\int_{g(c)}^{g(d)} f(x) d x=\int_{c}^{d} f[g(t)] g^{\prime}(t) d t$.

Proof:

Assume that g has a continuous derivative g^{\prime} on $[\mathrm{c}, \mathrm{d}]$
Let f be continuous on $g([c, d])$
Define $F(x)=\int_{g(c)}^{x} f(t) d t$ if $x \in g([c, d])$
To Prove: $\int_{c}^{x} f[g(t)] g^{I}(t) d t=F[g(x)]$ exists
Here f is continuous on $g([c, d])$
\therefore By Theorem 3.6, we get $\int_{g(c)}^{g(d)} f(x) d x$ exists
Also f is continuous on $g([c, d]) \&$
g is continuous on [c, d]
$\Rightarrow f o g$ is continuous on [c, d]
\& also we have g^{\prime} is continuous on [c, d]
$\Rightarrow(f o g) \cdot g^{\prime}$ is continuous on $[\mathrm{c}, \mathrm{d}]$
By Theorem 3.6, we get
$\int_{c}^{d}(f o g)(t) g^{\prime}(t) d t$ exists
(i.e.) $\int_{c}^{d} f[g(t)] g^{\prime}(t) d t$ exists

Define G on $[\mathrm{c}, \mathrm{d}]$ as follows:
$\mathrm{G}(\mathrm{x})=\int_{c}^{d} f[g(t)] g^{\prime}(t) d t$
To Prove: $\mathrm{G}(\mathrm{x})=F[g(x)]$
Now, By first Fundamental Theorem of Integral Calculus
\therefore equation $(2) \Rightarrow G^{\prime}(x)=F[g(x)] g^{\prime}(x)$
Now, By the chain rule of differentiation, we get

$$
\begin{align*}
& (F[g(x)])^{\prime}=F^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =f(g(x)) \cdot g^{\prime}(x) \quad\left[\therefore F^{\prime}(x)=f(x)\right] \\
& \therefore(F(g(x)))^{\prime}=f(g(x)) g^{\prime}(x) \quad \ldots \ldots \ldots(4) \tag{4}\\
& \therefore \quad[G(x)-F(g(x))]^{\prime}=G^{\prime}(x)-[F(g(x))]^{\prime} \\
& =f(g(x)) \cdot g^{\prime}(x)-f(g(x)) g^{\prime}(x) \quad \text { (by equation (3) \& (4)) } \\
& \therefore[G(x)-F(g(x))]^{\prime}=0 \\
& \Rightarrow G(x)-F(g(x))^{\prime} \text { is a constant }
\end{align*}
$$

$\operatorname{Sup} x=c$,
Then $\mathrm{G}(\mathrm{c})=\int_{c}^{d} f[g(t)] g^{\prime}(t) d t=0 \quad$ (by equation (2))
$\& F(g(c))=\int_{g(c)}^{g(c)} f(t) d t=0 \quad$ (by equation (1))
$\therefore G(c)=F(g(c))=0$
$\therefore G(x)-F(g(x))=0 \forall x \in[c, d]$
$\Rightarrow G(x)=F[g(x)] \forall x \epsilon[c, d]$
In particular, if $\mathrm{x}=\mathrm{d}$, then
$\mathrm{G}(\mathrm{d})-F(g(d))=0$
$\Rightarrow G(d)=F(g(d))$
(i.e.)., $\int_{c}^{d} f[g(t)] g^{\prime}(x) d x=\int_{g(c)}^{g(d)} f(x) d x \quad$ (by $1 \& 2$)

Note: [General Theorem on change of variable in a Riemann integral]
Assume that $\mathrm{h} \epsilon R$ on $[\mathrm{c}, \mathrm{d}]$ and if $x \epsilon[c, d]$, Let $g(x)=\int_{a}^{x} h(t) d t$, where ' a ' is a fixed point in [$\mathrm{c}, \mathrm{d}]$. Then if $f \in R$ on $g([c, d])$, then the integral $\int_{c}^{d} f[g(t)] h(t) d t$ exists and we have $\int_{g(c)}^{g(d)} f(x) d x=\int_{c}^{d} f[g(t)] h(t) d t$.

Second Mean- Value Theorem for Riemann Integrals

Theorem 3.16:

Let g be continuous and assume that $f \nearrow$ on $[\mathrm{a}, \mathrm{b}]$. Let A and B be two real numbers satisfying the inequalities $\mathrm{A} \leq f(a+)$ and $\mathrm{B} \geq f(b-)$. Then there exists a point x_{o} in [a.b] such that
(i) $\int_{a}^{b} f(x) g(x) d x=A \int_{a}^{x_{o}} g(x) d x+B \int_{x_{o}}^{b} g(x) d x$. In particular, if $f(x) \geq 0 \forall x \in[a, b]$, we have (ii) $\int_{a}^{b} f(x) g(x) d x=B \int_{x_{o}}^{b} g(x) d x$ where $x_{o} \epsilon[a, b]$ part (ii) is known as Bonnet's Theorem.

Proof:

Let ' g ' be continuous $\& f$ ग on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{A} \& \mathrm{~B}$ be two real numbers $\ni: \mathrm{A} \leq f(a+) \& \mathrm{~B} \geq f(b-)$.
(i) Let $\alpha(x)=\int_{a}^{x} g(t) d t$.

$$
\Rightarrow \alpha^{\prime}(x)=g(x)
$$

Here ' α ' is continuous $\& f \nearrow$ on $[\mathrm{a}, \mathrm{b}]$
Then by second Mean- Value Theorem for R-S integral Theorem7.31, we get

$$
\begin{align*}
& \int_{a}^{b} f(x) d \alpha(x)=f(a) \int_{a}^{x_{o}} d \alpha(x)+f(b) \int_{x_{o}}^{b} d \alpha(x) \\
& \Rightarrow \int_{a}^{b} f(x) \alpha^{\prime}(x) d x=f(a) \int_{a}^{x_{o}} \alpha^{\prime}(x) d x+f(b) \int_{x_{o}}^{b} \alpha^{\prime}(x) d x \\
& \Rightarrow \int_{a}^{b} f(x) g(x) d x=f(a) \int_{a}^{x_{o}} g(x) d x+f(b) \int_{x_{o}}^{b} g(x) d x . \\
& \Rightarrow \int_{a}^{b} f(x) g(x) d x=A \int_{a}^{x_{o}} g(x) d x+B \int_{x_{o}}^{b} g(x) d x \ldots \ldots \ldots \tag{1}
\end{align*}
$$

Where $\mathrm{A}=f(a) \& B=f(b)$
If $\mathrm{A} \& \mathrm{~B}$ are any two real numbers satisfying $\mathrm{A} \leq f(a+) \& \mathrm{~B} \geq f(b+)$, then we can redefine the end points $\mathrm{a} \& \mathrm{~b}$ to have $\mathrm{A}=f(a) \& B=f(b)$.
(ii) Given $f \nearrow$ on $[\mathrm{a}, \mathrm{b}]$
\Rightarrow Modified ' f ' is still increasing on $[\mathrm{a}, \mathrm{b}]$
Also we know that changing the value of ' f ' at a finite number of points does not affect the values of a Riemann integral.

Take $\mathrm{A}=\mathrm{a}$, we get,
From equation (1) $\Rightarrow \int_{a}^{b} f(x) g(x) d x=B \int_{x_{o}}^{b} g(x) d x$.

Riemann - satisfies integrals Depending on a Parameters

Theorem 3.17:

Let f be continuous at each point (x, y) of a rectangle $\mathrm{Q}=\{(\mathrm{x}, \mathrm{y}): \mathrm{a} \leq x \leq b, c \leq y \leq d\}$. Assume that α is of bounded variation on $[\mathrm{a}, \mathrm{b}]$ and Let F be the function defined on $[\mathrm{c}, \mathrm{d}]$, by the equation $\mathrm{F}(\mathrm{y})=\int_{a}^{b} f(x, y) d \alpha(x)$. Then F is continuous on [c, d]. In other words, if $y_{o} \in[c, d]$. We have $\lim _{y \rightarrow y_{o}} \int_{a}^{b} f(x, y) d \alpha x=\int_{a}^{b} \lim _{y \rightarrow y_{o}} f(x, y) d \alpha x=\int_{a}^{b} f\left(x, y_{o}\right) d \alpha x$.

Proof:

Given $\mathrm{Q}=\{(\mathrm{x}, \mathrm{y}): \mathrm{a} \leq x \leq b, c \leq y \leq d\}$
Let $\mathrm{F}(\mathrm{y})=\int_{a}^{b} f(x, y) d \alpha(x)$
To Prove: F is continuous on [c, d]
Assume that $\alpha \nearrow$ on $[\mathrm{a}, \mathrm{b}]$
$\therefore Q$ is a compact set, f is uniformly continuous on Q
\Rightarrow Given $\varepsilon>0$, $\ni \delta>0 \ni:\left|z-z^{\prime}\right|<\delta \Rightarrow\left|f(z)-f(z)^{\prime}\right|<\frac{\varepsilon}{\alpha(b)-\alpha(a)}$
where $\mathrm{z}=(\mathrm{x}, \mathrm{y}) \& z^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in Q$.
$\Rightarrow\left|z-z^{\prime}\right|<\delta \Rightarrow\left|f(x, y)-f\left(x^{\prime}, y^{\prime}\right)\right|<\frac{\varepsilon}{\alpha(b)-\alpha(a)}$
If $\left|y-y^{\prime}\right|<\delta$ we have
$\left|f(y)-f(y)^{\prime}\right|=\left|\int_{a}^{b} f(x, y) d \alpha(x)-\int_{a}^{b} f\left(x, y^{\prime}\right) d \alpha(x)\right|$ (by 1)
$=\left|\int_{a}^{b}\left[f(x, y)-\int_{a}^{b} f\left(x, y^{\prime}\right)\right] d \alpha(x)\right|$
$\leq \int_{a}^{b}\left|f(x, y)-f\left(x, y^{\prime}\right)\right| d \alpha(x)$
$<\frac{\varepsilon}{\alpha(b)-\alpha(a)} \int_{a}^{b} d \alpha(x) \quad$ (by equation (2))
$=\frac{\varepsilon}{\alpha(b)-\alpha(a)}[\alpha(b)-\alpha(a)]$
$\left|f(y)-f(y)^{\prime}\right|<\varepsilon$
(i.e.).,Given $\varepsilon>0, \ni \delta>0 \ni$: $\left|y-y^{\prime}\right|<\delta \Rightarrow\left|f(y)-f(y)^{\prime}\right|<\varepsilon$

Hence F is continuous on $[\mathrm{c}, \mathrm{d}]$
(i.e.)., If $y_{o} \epsilon[c, d]$, then

$$
\begin{aligned}
& \Rightarrow \lim _{y \rightarrow y_{o}} \int_{a}^{b} f(x, y) d \alpha x=\int_{a}^{b} f\left(x, y_{o}\right) d \alpha x \\
& \Rightarrow \int_{a}^{b} \lim _{y \rightarrow y_{o}} f(x, y) d \alpha x=\int_{a}^{b} f\left(x, y_{o}\right) d \alpha x
\end{aligned}
$$

$\lim _{y \rightarrow y_{o}} \int_{a}^{b} f(x, y) d \alpha x=\int_{a}^{b} \lim _{y \rightarrow y_{o}} f(x, y) d \alpha x=\int_{a}^{b} f\left(x, y_{o}\right) d \alpha x$

Theorem 3.18:

If f is continuous on the rectangle $[\mathrm{a}, \mathrm{b}] \times[\mathrm{c}, \mathrm{d}]$ and if $g \in R$ on $[\mathrm{a}, \mathrm{b}]$, then the function F defined by the equation $\mathrm{F}(\mathrm{y})=\int_{a}^{b} g(x) f(x, y) d x$, is continuous on [c, d]. That is if $y_{o} \in[c, d]$, we have $\lim _{y \rightarrow y_{o}} \int_{a}^{b} g(x) f(x, y) d x=\int_{a}^{b} g(x) f\left(x, y_{o}\right) d x$

Proof:

Given $\mathrm{F}(\mathrm{y})=\int_{a}^{b} g(x) f(x, y) d x$
To prove: F is continuous on $[\mathrm{c}, \mathrm{d}]$

Let $G(x)=\int_{a}^{b} g(x) d x$
By Theorem 3.12 we get,

$$
\begin{aligned}
& \int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} f(x) d G(x) \\
& \text { (i.e.)., } \int_{a}^{b} f(x, y) g(x) d x=\int_{a}^{b} f(x, y) d G(x) \\
& \Rightarrow F(y)=\int_{a}^{b} f(x, y) d G(x)
\end{aligned}
$$

By Theorem 3.17, we get F is continuous on [c, d]
(i.e.) If $y_{o} \epsilon[c, d], \lim _{y \rightarrow y_{o}} F(y)=\mathrm{F}\left(y_{o}\right)$

$$
\Rightarrow \lim _{y \rightarrow y_{o}} \int_{a}^{b} g(x) f(x, y) d x=\int_{a}^{b} g(x) f\left(x, y_{o}\right) d x
$$

Unit IV

Infinite Series and infinite Products - Double sequences - Double series -Rearrangement Theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products.

Power series - Multiplication of power series - The Taylor's series generated by a function Bernstein's Theorem-Abel's limit Theorem- Tauber's theorem.

Infinite series and Infinite Products

Double Sequences:

Definition 4.1:

A function f whose domain is $\mathrm{Z}^{+} \mathrm{x} \mathrm{Z}^{+}$is called a double sequences.

Definition 4.2:

If $\mathrm{a} \in \mathrm{C}$, we write $\lim _{p, q \rightarrow \infty} f(p, q)=\mathrm{a}$ and we say that the double sequence f converges to ' a ', provided that the following condition is satisfied:

For all $\varepsilon>0$ there exist N such that $|\mathrm{f}(\mathrm{p}, \mathrm{q})-\mathrm{a}|<\varepsilon$ whenever $\mathrm{p}, \mathrm{q}>\mathrm{N}$

Note:

$\lim _{p, q \rightarrow \infty} f(p, q)$ Is call a double limit.
$\lim _{p \rightarrow \infty} \lim _{q \rightarrow \infty} f(p, q)$ Is called an iterated limit.

Theorem 4.3:

Assume that $\lim _{p, q \rightarrow \infty} f(p, q)=\mathrm{a}$. For each fixed p. Assume that the $\lim _{q \rightarrow \infty} f(p, q)$ exists. Then the limit $\lim _{p \rightarrow \infty}\left(\lim _{q \rightarrow \infty} f(p, q)\right)$ also exists and has the value ' a '.

Proof:

$$
\lim _{p, q \rightarrow \infty} f(p, q)=\mathrm{a}
$$

\Rightarrow given $\varepsilon>0$, there exist N_{1} such that
$|\mathrm{f}(\mathrm{p}, \mathrm{q})-\mathrm{a}|<\varepsilon / 2$ whenever $\mathrm{p}, \mathrm{q}>\mathrm{N}_{1}$
Given $\lim _{q \rightarrow \infty} f(p, q)$ exists
Let $\mathrm{F}(\mathrm{p})=\lim _{q \rightarrow \infty} f(p, q)$
For each p there exist N_{2} such that,
$|\mathrm{F}(\mathrm{p})-\mathrm{f}(\mathrm{p}, \mathrm{q})|<\varepsilon / 2$ whenever $\mathrm{q}>\mathrm{N}_{2}$
For each $\mathrm{p}>\mathrm{N}_{1}$ choose N_{2} and then choose a fixed q greater than both $\mathrm{N}_{1} \& \mathrm{~N}_{2}$
$\therefore|\mathrm{F}(\mathrm{p})-\mathrm{a}|=|\mathrm{F}(\mathrm{p})-\mathrm{f}(\mathrm{p}, \mathrm{q})+\mathrm{f}(\mathrm{p}, \mathrm{q})-\mathrm{a}|$

$$
\begin{aligned}
& =|F(p)-\mathrm{f}(\mathrm{p}, \mathrm{q})|+|\mathrm{f}(\mathrm{p}, \mathrm{q})-\mathrm{a}| \\
& =\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

$|\mathrm{F}(\mathrm{P})-\mathrm{a}|<\varepsilon$
$\lim _{p \rightarrow \infty} \mathrm{~F}(\mathrm{p})=\mathrm{a}$
$\lim _{p \rightarrow \infty}\left(\lim _{q \rightarrow \infty} f(p, q)\right)=\mathrm{a}$
Hence the existence of the double limit $\lim _{p, q \rightarrow \infty} f(p, q)$ and the limit $\lim _{q \rightarrow \infty} f(p, q)$ implies the existence of the iterated limit $\lim _{p \rightarrow \infty}\left(\lim _{q \rightarrow \infty} f(p, q)\right)$.

Note:

The converse of the above Theorem is not true
Let $\mathrm{f}(\mathrm{p}, \mathrm{q})=\frac{p q}{p^{2}+q^{2}}(\mathrm{p}=1,2, \ldots \ldots \quad ; \mathrm{q}=1,2, \ldots \ldots .$.
Then $\lim _{q \rightarrow \infty} f(p, q)=\lim _{q \rightarrow \infty} \frac{p q}{p^{2}+q^{2}}=\lim _{q \rightarrow \infty} \frac{p}{q\left(\frac{p^{2}}{q^{2}}+1\right)}=0$
$\lim _{q \rightarrow \infty} f(p, q)=0$
But when $\mathrm{p}=\mathrm{q}, \mathrm{f}(\mathrm{p}, \mathrm{q})=\frac{p^{2}}{p^{2}+p^{2}}=\frac{p^{2}}{2 p^{2}}=1 / 2$
\& when $\mathrm{p}=2 \mathrm{q}, \mathrm{f}(\mathrm{p}, \mathrm{q})=\frac{2 q^{2}}{4 q^{2}+q^{2}}=\frac{2 q^{2}}{5 q^{2}}=2 / 5$
(i.e.), The double limit cannot exist in this case.

Double Series

Definition 4.4:

Let f be a double sequence and let S be the double sequence defined by the equation
$\mathrm{S}(\mathrm{p}, \mathrm{q})=\sum_{m=1}^{p} \sum_{n=1}^{q}(f(m, n)$
The pair (f, s) is called a double series and is denoted by
$\sum_{m, n}\left(f(m, n)\right.$ or $\sum \mathrm{f}(\mathrm{m}, \mathrm{n})$
The double series is said to be converge to the sum ' a ' if
$\lim _{p, q \rightarrow \infty} S(p, q)=\mathrm{a}$

Note:

- Each number $\mathrm{f}(\mathrm{m}, \mathrm{n})$ is called a term of the double series.
- Each $S(p, q)$ is a partial sum of the double series.
- A double series of positive terms converges if and only if the set of partial term is bounded. We say $\sum \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely if
$\sum|\mathrm{f}(\mathrm{m}, \mathrm{n})|$ converges
- A double series converges absolutely implies A double series converges.

Rearrangement Theorem for Double series

Definition 4.5:

Let f be a double sequence and let ' g ' be a one to one function defined on Z^{+}with range $\mathrm{Z}^{+} \mathrm{x}$ Z^{+}. Let G be the Sequence defined by $G(n)=f[g(n)]$ if $n \in Z^{+}$

Then g is said to be an arrangement of the double sequence f into the sequence G

Theorem 4.6:

Let $\sum \mathrm{f}(\mathrm{m}, \mathrm{n})$ be a given double series and let ' g ' be a arrangement of the double sequence f into the Sequence G. Then
(a) $\sum \mathrm{G}(\mathrm{n})$ converges absolutely if and only if $\sum \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely.

Assume that $\sum \mathrm{f}(\mathrm{m}, \mathrm{n})$ does converges absolutely with sum S , we have further:
(b) $\sum_{n=1}^{\infty} G(n)=S$
(c) $\sum_{n=1}^{\infty} f(m, n) \& \sum_{m=1}^{\infty} f(m, n)$ both converges absolutely
(d) If $\mathrm{A}_{\mathrm{n}}=\sum_{n=1}^{\infty} f(m, n)$ and $\mathrm{B}_{\mathrm{n}}=\sum_{n=1}^{\infty} f(m, n)$ both series $\sum \mathrm{A}_{\mathrm{n}} \& \sum \mathrm{~B}_{\mathrm{n}}$ converges absolutely and both have sum S .
(i.e.), $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m, n)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(m, n)=\mathrm{S}$

Proof:

Let $\sum \mathrm{f}(\mathrm{m}, \mathrm{n})$ be a given double series
Let ' g ' be an arrangement of the double sequence f into the sequence G
$\mathrm{G}(\mathrm{n})=\mathrm{f}[\mathrm{g}(\mathrm{n})]$ if $\mathrm{n} \in \mathrm{Z}^{+}$
a) Let $\mathrm{T}_{\mathrm{k}}=|\mathrm{G}(1)|+|\mathrm{G}(2)|+\ldots \ldots . .+|\mathrm{G}(\mathrm{k})|$

Let $\mathrm{S}(\mathrm{p}, \mathrm{q})=\sum_{m=1}^{p} \sum_{n=1}^{q}|f(m, n)|$
Then, For each k, there exist a pair (p, q) such that $T_{k} \leq S(p, q)$
Conversely,
For each pair (p, q), there exist an integer ' r ' such that $S(p, q) \leq T_{r}$
$\sum|\mathrm{G}(\mathrm{n})|$ has bounded partial sums if and only if $\sum|\mathrm{f}(\mathrm{m}, \mathrm{n})|$ has bounded partial sums.
$\sum|\mathrm{G}(\mathrm{n})|$ converges if and only if $\sum \mid \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges
(i.e.) $\sum|\mathrm{G}(\mathrm{n})|$ converges absolutely if and only if $\sum \mid \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely
b) Assume that $\sum \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely
(i.e.), $\sum|\mathrm{f}(\mathrm{m}, \mathrm{n})|$ converges with sum S

Let ' g ' be an arrangement of $f(m, n)$ into G
To prove: $\sum_{n=1}^{\infty} \mathrm{G}(\mathrm{n})=\mathrm{S}$

First, we shall show that the sum of the series $\sum \mathrm{G}(\mathrm{n})$ is independent of the function g used to construct G from f .

Let h be an another arrangement of the double sequence $f(m, n)$ into sequence H
We have, $\mathrm{G}(\mathrm{n})=\mathrm{f}[\mathrm{g}(\mathrm{n})] \& \mathrm{~h}(\mathrm{n})=\mathrm{f}[\mathrm{h}(\mathrm{n})]$
Now,
$\mathrm{H}(\mathrm{n})=\mathrm{f}(\mathrm{h}(\mathrm{n}))$
$\mathrm{H}\left(\mathrm{h}^{-1}(\mathrm{n})\right)=\mathrm{f}\left(\mathrm{h}\left(\mathrm{h}^{-1}(\mathrm{n})\right)\right)$
$\mathrm{H}\left(\mathrm{h}^{-1}(\mathrm{n})=\mathrm{f}(\mathrm{n})\right.$
$\mathrm{H}\left(\mathrm{h}^{-1}(\mathrm{~g}(\mathrm{n}))\right)=\mathrm{f}(\mathrm{g}(\mathrm{n}))$
$\mathrm{G}(\mathrm{n})=\mathrm{f}[\mathrm{g}(\mathrm{n})]$ becomes $\mathrm{G}(\mathrm{n})=\mathrm{H}\left(\mathrm{h}_{-1}(\mathrm{~g}(\mathrm{n}))\right)$
$\mathrm{G}(\mathrm{n})=\mathrm{H}\left(\mathrm{k}(\mathrm{n})\right.$ where $\mathrm{k}(\mathrm{n})=\mathrm{h}_{-1}(\mathrm{~g}(\mathrm{n}))$
Now,
We have $\mathrm{g}: \mathrm{Z}^{+} \mathrm{x} \mathrm{Z}^{+}$\& $\mathrm{h}-1: \mathrm{Z}^{+} \mathrm{x} \mathrm{Z}^{+} \rightarrow \mathrm{Z}^{+}$
$\mathrm{h}^{-1} \mathrm{~g}: \mathrm{Z}^{+} \mathrm{x} \mathrm{Z} \mathrm{Z}^{+}$
(i.e.) k is a 1-1 mapping of Z^{+}onto Z^{+}
$\sum \mathrm{H}(\mathrm{n})$ is a rearrangement of $\sum \mathrm{G}(\mathrm{n})$
$\sum \mathrm{H}(\mathrm{n}) \& \sum \mathrm{G}(\mathrm{n})$ has the same sum
To show that $S=S^{\prime}$
Let $\mathrm{T}=\lim _{p, q \rightarrow \infty} \mathrm{~S}(\mathrm{p}, \mathrm{q})$
Given $\varepsilon>0$, choose N so that
$0 \leq|T-S(p, q)|<\varepsilon / 2$ whenever $p, q>N$
Let $\mathrm{t}_{\mathrm{k}}=\sum_{n=1}^{k} \mathrm{G}\left(\mathrm{n}\left(, \mathrm{S}(\mathrm{p}, \mathrm{q})=\sum_{m=1}^{p} \sum_{n=1}^{q} \mathrm{f}(\mathrm{m}, \mathrm{n})\right.\right.$
Choose M so that t_{M} includes all terms $\mathrm{f}(\mathrm{m}, \mathrm{n})$ with $1 \leq \mathrm{m} \leq \mathrm{N}+1 \quad \& 1 \leq \mathrm{n} \leq \mathrm{N}+1$

Then $t_{M}-S(N+1, N+1)$ is a sum of terms $f(m, n)$ with $m>N$ or $n>N$

If $\mathrm{n} \geq \mathrm{M}$, we have
$\left|\mathrm{t}_{\mathrm{M}}-\mathrm{S}(\mathrm{N}+1, \mathrm{~N}+1)\right| \leq \mathrm{T}-\mathrm{S}(\mathrm{N}+1, \mathrm{~N}+1)<\varepsilon / 2 \quad$ (by equation (1))

Similarly
$|\mathrm{S}-\mathrm{S}(\mathrm{N}+1, \mathrm{~N}+1)| \leq \mathrm{T}-\mathrm{S}(\mathrm{N}+1, \mathrm{~N}+1)<\varepsilon / 2$

Given $\varepsilon>0$, we can find M so that $\left|\mathrm{t}_{\mathrm{n}}-\mathrm{S}\right|<\varepsilon$ whenever $\mathrm{n} \geq \mathrm{M}$
$\Rightarrow \lim _{n \rightarrow \infty} \mathrm{t}_{\mathrm{n}}=\mathrm{S}$

But we have $\lim _{n \rightarrow \infty} \mathrm{t}_{\mathrm{n}}=S^{\prime}$
$\therefore \mathrm{S}=S^{\prime}$

Hence $\sum_{n=1}^{\infty} G(n)=S$
c) Each series $\sum_{n=1}^{\infty} f(m, n) \& \sum_{m=1}^{\infty} f(m, n)$ are the sub series of $\sum G(n)$.

We have $\Sigma \mathrm{G}(\mathrm{n})$ converges absolutely
\rightarrow Sub series $\sum_{n=1}^{\infty} f(m, n) \& \sum_{m=1}^{\infty} f(m, n)$ of $\sum G(n)$ are converges absolutely
(d) Given: $A_{m}=\sum_{n=1}^{\infty} f(m, n) \& B_{n}=\sum_{n=1}^{\infty} f(m, n)$

To prove: $\sum \mathrm{A}_{\mathrm{m}} \& \sum \mathrm{~B}_{\mathrm{n}}$ converges absolutely and both have sum S .
we conclude that
$\sum \mathrm{A}_{\mathrm{m}}$ converges absolutely \& have sum S
$\sum \mathrm{b}_{\mathrm{n}}$ converges absolutely \& have sum S

Note:
$\sum_{m=1}^{\infty} \quad \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n}) \neq \sum_{n=1}^{\infty} \quad \sum_{m=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})$
Both the series are "Iterated series"

For example,
$\operatorname{Sup} f(m, n)=\left\{\begin{array}{cc}1 & \text { if } m=n+1,1,2, \ldots \\ -1 & \text { if } m=n-1, n=1,2 \ldots \\ 0 & \text { otherwise }\end{array}\right.$
Then $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})=-1 \& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})=1$

Definition 4.7:

Let f be a function whose domain is Z^{+}and whose range is an infinite subset of Z^{+}, and assume that f is $1-1$ on Z^{+}. Let $\sum a_{n} \& \sum b_{n}$ be two series such that $b_{n}=a_{f(n)}$ if $n \in Z^{+}$. Then $\sum b_{n}$ is said to be a subseries of $\sum a_{n}$

Theorem 4.8:

If $\sum a_{n}$ converges absolutely, every subseries b_{n} also converges absolutely. Moreover, we have

$$
\left|\sum_{n=1}^{\infty} \quad b_{n}\right| \leq \sum_{n=1}^{\infty} \quad\left|b_{n}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}\right|
$$

Proof:

Given ' n ', let N be the largest integer in the set $\{\mathrm{f}(1), \mathrm{f}(2), \ldots . ., \mathrm{f}(\mathrm{n})\}$
Then $\left|\sum_{k=1}^{n} \mathrm{~b}_{\mathrm{n}}\right| \leq \sum_{k=1}^{n}\left|\mathrm{~b}_{\mathrm{k}}\right| \leq \sum_{k=1}^{N}\left|\mathrm{a}_{\mathrm{k}}\right| \leq \sum_{k=1}^{n}\left|\mathrm{a}_{\mathrm{k}}\right|$
$\therefore \sum_{k=1}^{n}\left|\mathrm{~b}_{\mathrm{k}}\right| \leq \sum_{k=1}^{n}\left|\mathrm{a}_{\mathrm{k}}\right|$
$\Rightarrow \sum \mathrm{b}_{\mathrm{n}}$ converges absolutely

Theorem 4.9:

Let $\left\{\mathrm{f}_{1}, \mathrm{f}_{2} \ldots.\right\}$ be a countable collection of functions, each defined on Z^{+}, having the following properties
(a) each f_{n} is 1-1 on Z^{+}
(b) The range $f_{n}\left(Z^{+}\right)$is a subset Q_{n} of Z^{+}
(c) $\left\{\mathrm{Q}_{1} \mathrm{Q}_{2}, \ldots \ldots.\right\}$ is a collection of disjoint sets whose union is Z^{+}

Let $\sum a_{n}$ be an absolutely convergent series and define
$\mathrm{b}_{\mathrm{k}}(\mathrm{n})=\mathrm{a}_{\mathrm{fk}(\mathrm{n})}$ if $\mathrm{n} \in \mathrm{Z}^{+}, \mathrm{k} \in \mathrm{Z}^{+}$
Then,
(i) For each $k, \sum_{n=1}^{\infty} b_{k}(n)$ is an absolutely convergent Subseries of $\sum a_{n}$
(ii) If $S_{k}=\sum_{n=1}^{\infty} b_{k}(n)$, the series $\sum_{k=1}^{\infty} S_{k}$ converges absolutely and has the same sum as $\sum_{k=1}^{\infty} a_{\mathrm{k}}$

Proof:

Given $\sum a_{n}$ converges absolutely.
The subseries $\sum_{n=1}^{\infty} b_{k}(n)$ also converges absolutely.
To prove, $\sum_{k=1}^{\infty} \mathrm{S}_{\mathrm{k}}$ converges absolutely \& has sum $\sum_{k=1}^{\infty} \mathrm{a}_{\mathrm{k}}$
Let $\mathrm{t}_{\mathrm{k}}=\left|\mathrm{S}_{1}\right|+\left|\mathrm{S}_{2}\right|+\ldots \ldots+\left|\mathrm{S}_{\mathrm{k}}\right|$
Then

$$
\begin{aligned}
\mathrm{t}_{\mathrm{k}} & \left.\leq \sum_{n=1}^{\infty} \mid \mathrm{b}(\mathrm{n})\right\}+\ldots \ldots+\sum_{n=1}^{\infty}\left|\mathrm{b}_{\mathrm{k}}(\mathrm{n})\right| \\
& =\sum_{n=1}^{\infty}\left(\left|\mathrm{b}_{1}(\mathrm{n})\right|+\mathrm{b}_{2}(\mathrm{n})+\ldots \ldots\left|\mathrm{b}_{\mathrm{k}}(\mathrm{n})\right|\right) \\
& =\sum_{n=1}^{\infty}\left(\left|\mathrm{a}_{\mathrm{f} 1(\mathrm{n})}\right|+\ldots \ldots \ldots+\left|\mathrm{a}_{\mathrm{fk}(\mathrm{n})}\right|\right) \\
& \leq \sum_{n=1}^{\infty}\left|\mathrm{a}_{\mathrm{n}}\right| \\
& \therefore \mathrm{t}_{\mathrm{k}} \leq \sum_{n=1}^{\infty}\left|\mathrm{a}_{\mathrm{n}}\right|
\end{aligned}
$$

$\therefore \sum\left|\mathrm{S}_{\mathrm{k}}\right|$ has bounded partial sums
$\therefore \sum \mathrm{S}_{\mathrm{k}}$ converges
(i.e.) $\sum \mathrm{S}_{\mathrm{k}}$ converges absolutely

Now, to prove the sum: $\sum \mathrm{S}_{\mathrm{k}}$ is $\sum \mathrm{a}_{\mathrm{k}}$
Let $\varepsilon>0$ be given.
Choose N so that $\mathrm{n} \geq \mathrm{N} \Rightarrow \sum_{k=1}^{n}\left|\mathrm{a}_{\mathrm{k}}\right|-\sum_{k=1}^{n}\left|\mathrm{a}_{\mathrm{k}}\right|<\varepsilon / 2$
Choose enough functions $f_{1}, f_{2}, \ldots . . f_{r}$ so that each term $a_{1}, a_{2}, \ldots, a_{N}$ will appear somewhere in the sum
$\sum_{n=1}^{\infty} \mathrm{afl}_{\mathrm{f}(\mathrm{n})}+\ldots . .+\sum_{n=1}^{\infty} \mathrm{aff}_{\mathrm{fr}(\mathrm{n})}$
The number r depends on $N \&$ hence on ε If $n>r \& n>N$. we have

$$
\begin{align*}
& \left|\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots .+\mathrm{S}_{\mathrm{n}}-\sum_{k=1}^{n} \mathrm{a}_{\mathrm{k}}\right| \leq\left|\mathrm{a}_{\mathrm{N}+1}\right|+\left|\mathrm{a}_{\mathrm{N}+2}\right|+\ldots<\varepsilon / 2 \\
& \left|\mathrm{~S}_{1}+\mathrm{S}_{2}+\ldots .+\mathrm{S}_{\mathrm{n}}-\sum_{k=1}^{n} \mathrm{a}_{\mathrm{k}}\right|<\varepsilon / 2 \tag{2}
\end{align*}
$$

Now,
$\left|\sum_{k=1}^{\infty} \mathrm{a}_{\mathrm{k}}-\sum_{k=1}^{n} \mathrm{a}_{\mathrm{k}}\right| \leq \sum_{k=1}^{n}\left|\mathrm{a}_{\mathrm{k}}\right|-\sum_{k=1}^{n}\left|\mathrm{a}_{\mathrm{k}}\right|<\varepsilon / 2$
$\left|\sum_{k=1}^{\infty} \mathrm{a}_{\mathrm{k}}-\sum_{k=1}^{n} \mathrm{a}_{\mathrm{k}}\right|<\varepsilon / 2$

From equation (2) \& (3) we get
$\left|\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots .+\mathrm{S}_{\mathrm{n}}-\sum_{k=1}^{n} \mathrm{a}_{\mathrm{k}}\right|<\varepsilon \quad$ if $\mathrm{n}>\mathrm{r}, \mathrm{n}>\mathrm{N}$
\therefore their sum $\sum \mathrm{S}_{\mathrm{k}}$ is $\sum \mathrm{a}_{\mathrm{k}}$

The subseries also has the same as the series

A sufficient condition for equality of Iterated Series

Theorem 4.10:

Let f be a complex-valued double sequence. Assume that $\sum_{n=1}^{\infty} f(m, n)$ converges absolutely for each fixed m and that $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}|f(m, n)|$ converges. Then,
a) The double series $\sum_{m, n} f(m, n)$ converges absolutely
b) The series $\sum_{m=1}^{\infty} f(m, n)$ converges absolutely for each ' n '.
c) Both iterated series $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(\mathrm{~m}, \mathrm{n})$ and $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely and we have $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})=\sum_{m, n} \mathrm{f}(\mathrm{m}, \mathrm{n})$

Proof:

Let f be a complex-valued double sequence
Assume that $\sum_{n=1}^{\infty} f(m, n)$ converges absolutely for all fixed m
$\& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}|\mathrm{f}(\mathrm{m}, \mathrm{n})|$ converges.
$\Rightarrow \sum_{m=1}^{\infty} \quad \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely

Let ' g ' be an arrangement of the double sequence ' f ' in to the sequence G.
$\therefore \mathrm{G}(\mathrm{n})=\mathrm{f}[\mathrm{g}(\mathrm{n})]$ if $\mathrm{n} \in \mathrm{Z}^{+}$

All the partial sums of $\sum|\mathrm{G}(\mathrm{n})|$ are bounded by $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})$
$\therefore \sum \mathrm{G}(\mathrm{n})$ converges absolutely
$\Rightarrow \sum_{m, n} \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely (by theorem 4.6 (a))

By Theorem 4.6 (c),
$\sum_{m=1}^{\infty} f(m, n)$ converges absolutely \forall fixed ' n '.
By Theorem 4.6 (d),
$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n}) \& \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely and $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{f}(\mathrm{m}, \mathrm{n})=$ $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(m, n)=\sum_{m, n} \mathrm{f}(\mathrm{m}, \mathrm{n})$

Theorem 4.11:

Let $\sum \mathrm{a}_{\mathrm{m}}$ and $\sum \mathrm{b}_{\mathrm{n}}$ be two absolutely convergent series with sums A \& B, respectively. Let f be the double sequence defined by the equation
$\mathrm{f}(\mathrm{m}, \mathrm{n})=\mathrm{a}_{\mathrm{m}} \mathrm{b}_{\mathrm{n}}$ if $(\mathrm{m}, \mathrm{n}) \in \mathrm{Z}^{+} \mathrm{x} \mathrm{Z}^{+}$
Then $f(m, n)$ converges absolutely and has the sum $A B$

Proof:

Let $\sum \mathrm{a}_{\mathrm{m}} \& \sum \mathrm{~b}_{\mathrm{n}}$ be two absolutely converges series with sums A \& B, respectively.
Let f be the double sequence by $\mathrm{f}(\mathrm{m}, \mathrm{n})=\mathrm{a}_{\mathrm{m}} \mathrm{b}_{\mathrm{n}}$ if $(\mathrm{m}, \mathrm{n}) \in \mathrm{Z}^{+} \mathrm{x} \mathrm{Z}^{+}$TP: $\sum_{m, n} \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely \& has sum AB

Now, $\sum_{m=1}^{\infty}\left|\mathrm{a}_{\mathrm{m}}\right| \sum_{n=1}^{\infty}\left|\mathrm{b}_{\mathrm{n}}\right|=\sum_{m=1}^{\infty}\left(\left|\mathrm{a}_{\mathrm{m}}\right| \sum_{n=1}^{\infty}\left|\mathrm{b}_{\mathrm{n}}\right|\right)$

$$
=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\mathrm{a}_{\mathrm{m}} \| \mathrm{b}_{\mathrm{n}}\right|
$$

$\sum_{m=1}^{\infty}\left|\mathrm{a}_{\mathrm{m}}\right| \sum_{n=1}^{\infty}\left|\mathrm{b}_{\mathrm{n}}\right|=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|\mathrm{a}_{\mathrm{m}} \mathrm{b}_{\mathrm{n}}\right|$
\therefore The double series $\sum_{m, n} \mathrm{a}_{\mathrm{m}} \mathrm{b}_{\mathrm{n}}$ converges absolutely \& has the sum AB (by theorem 4.10) (i.e.), $\sum_{m, n} \mathrm{f}(\mathrm{m}, \mathrm{n})$ converges absolutely \& has sum AB

Multiplication of Series:

Definition 4.12:

Given two series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ define
$\mathrm{C}_{\mathrm{n}}=\sum_{k=0}^{\infty} \quad \mathrm{a}_{\mathrm{k}} \mathrm{b}_{\mathrm{n}-\mathrm{k}}$ if $\mathrm{n}=1,2, \ldots$
The series $\sum_{n=0}^{\infty} \mathrm{C}_{\mathrm{n}}$ is called the Cauchy product of $\sum \mathrm{a}_{\mathrm{n}} \& \sum \mathrm{~b}_{\mathrm{n}}$

Note:

- $\quad \sum \mathrm{a}_{\mathrm{n}} \& \sum \mathrm{~b}_{\mathrm{n}}$ converges absolutely $=>\sum \mathrm{C}_{\mathrm{n}}$ converges and $\sum \mathrm{C}_{\mathrm{n}}=\left(\sum \mathrm{a}_{\mathrm{n}}\right)\left(\sum \mathrm{b}_{\mathrm{n}}\right)$
- This equation may fall to hold if $\sum \mathrm{a}_{\mathrm{n}} \& \sum \mathrm{~b}_{\mathrm{n}}$ conditionally convergent
- (i.e.), $\sum \mathrm{a}_{\mathrm{n}} \& \sum \mathrm{~b}_{\mathrm{n}}$ conditionally convergent not implies C_{n} converges
- If either $\sum a_{0}$ (or) $\sum b_{n}$ converges absolutely implies c_{n} converges

Theorem 4.13: [Mertens Theorem]

Assume that $\sum_{n=0}^{\infty} \mathrm{a}_{\mathrm{n}}$ converges absolutely and has sum A, and suppose $\sum_{n=0}^{\infty} \mathrm{b}_{\mathrm{n}}$ converges with sum B. Then the Cauchy product of these two series converges and has sum AB.

Proof:

Given $\sum_{n=0}^{\infty} a_{n}$ converges absolutely and has sum A \& $\sum_{n=0}^{\infty} b_{n}$ converges with sum B
Let the Cauchy product of $\sum \mathrm{a}_{\mathrm{n}} \& \sum \mathrm{~b}_{\mathrm{n}}$ be $\sum_{n=0}^{\infty} \mathrm{C}_{\mathrm{n}}$ and define
$C_{n}=\sum_{n=0}^{\infty} a_{k} b_{n-k}$ if $n=1,2, \ldots$
Define $\mathrm{A}_{\mathrm{n}}=\sum_{k=0}^{n} \mathrm{a}_{\mathrm{k}} \& \mathrm{~B}_{\mathrm{n}}=\sum_{k=0}^{n} \mathrm{~b}_{\mathrm{k}} \& \mathrm{C}_{\mathrm{n}}=\sum_{k=0}^{\infty} \mathrm{C}_{\mathrm{k}}$
Let $\mathrm{d}_{\mathrm{n}}=\mathrm{B}-\mathrm{B}_{\mathrm{n}} \& \mathrm{e}_{\mathrm{n}}=\sum_{k=0}^{n} \mathrm{a}_{\mathrm{k}} \mathrm{d}_{\mathrm{n}-\mathrm{k}}$
Define $\mathrm{f}_{\mathrm{n}}(\mathrm{k})=\left\{\begin{array}{cc}a_{k} b_{n-k} & \text { if } n \geq k \\ 0 \quad \text { if } n<k\end{array}\right.$
Then

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=\sum_{n=0}^{p} \sum_{k=0}^{n} \mathrm{a}_{\mathrm{k}} \mathrm{~b}_{\mathrm{n}-\mathrm{k}} \\
&=\sum_{n=0}^{p} b_{n-k} \sum_{k=0}^{n} a_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{p} a_{k} \sum_{k=0}^{p} b_{n-k} \\
& =\sum_{k=0}^{p} a_{k} \sum_{m=0}^{p-k} b_{m} \\
& =\sum_{k=0}^{p} a_{k} B_{p-k} \quad(\text { by } 2) \\
& =\sum_{k=0}^{p} \mathrm{a}_{\mathrm{k}}\left(\mathrm{~B}-\mathrm{d}_{\mathrm{p}-\mathrm{k}}\right) \quad(\text { by } 3) \\
& =\sum_{k=0}^{p} \mathrm{a}_{\mathrm{k}} \mathrm{~B}-\sum_{k=0}^{p} \quad \mathrm{a}_{\mathrm{k}} \mathrm{~d}_{\mathrm{p}-\mathrm{k}}
\end{aligned}
$$

$C_{p}=A_{p} B-e_{p}($ by equation (2) \& (3))

It is sufficient to show that $\mathrm{e}_{\mathrm{p}} \rightarrow 0$ as $\mathrm{p} \rightarrow \infty$
(3) $\Rightarrow \mathrm{d}_{\mathrm{n}}=\mathrm{B}-\mathrm{B}_{\mathrm{n}}=\sum_{n=1}^{\infty} \mathrm{b}_{\mathrm{n}}-\sum_{k=0}^{n} \mathrm{~b}_{\mathrm{k}}$
$\therefore\left\{\mathrm{d}_{\mathrm{n}}\right\} \rightarrow 0 \quad\left(\because \sum \mathrm{~b}_{\mathrm{n}}\right.$ converges $)$
$\Rightarrow\left\{d_{n}\right\}$ is bounded
\Rightarrow Choose $\mathrm{M}>0$ so that $\left|\mathrm{d}_{\mathrm{n}}\right| \leq \mathrm{M} V \mathrm{n}$

Let $K=\sum_{n=0}^{\infty}\left|a_{n}\right|$

Now, $\left\{\mathrm{d}_{\mathrm{n}}\right\} \rightarrow 0 \& \sum\left|\mathrm{a}_{\mathrm{n}}\right|$ converges
\Rightarrow Given $\varepsilon>0$, Choose N so that
$\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{d}_{\mathrm{n}}\right|<\varepsilon / 2 \mathrm{~K}$
$\& \mathrm{n}>\mathrm{N} \Rightarrow \sum_{n=N+1}^{\infty}\left|\mathrm{a}_{\mathrm{n}}\right|<\varepsilon / 2 \mathrm{M}$

For $\mathrm{p}>2 \mathrm{~N}$, we can write

$$
\begin{aligned}
3 \Rightarrow\left|\mathrm{e}_{\mathrm{p}}\right|=\mid \sum_{k=0}^{p} & \mathrm{a}_{\mathrm{k}} \mathrm{~d}_{\mathrm{p}-\mathrm{k}} \mid \\
& =\left|\sum_{k=0}^{N} \quad \mathrm{a}_{\mathrm{k}} \mathrm{~d}_{\mathrm{p}-\mathrm{k}}+\sum_{k=N+1}^{p} \mathrm{a}_{\mathrm{k}} \mathrm{~d}_{\mathrm{p}-\mathrm{k}}\right| \\
& \leq\left|\sum_{k=0}^{N} \mathrm{a}_{\mathrm{k}} \mathrm{~d}_{\mathrm{p}-\mathrm{k}}\right|+\left|\sum_{k=N+1}^{p} \mathrm{a}_{\mathrm{k}} \mathrm{~d}_{\mathrm{p}-\mathrm{k}}\right| \\
& \leq \varepsilon / 2 \mathrm{~K} \sum_{k=0}^{N}\left|\mathrm{a}_{\mathrm{k}}\right|+\mathrm{M} \sum_{k=N+1}^{p}\left|\mathrm{a}_{\mathrm{k}}\right| \quad \text { (by equation (5) \& (6)) } \\
& <\frac{\varepsilon}{2 K} \cdot \mathrm{~K}+\mathrm{M} \frac{\varepsilon}{2 M}
\end{aligned}
$$

$$
<\varepsilon / 2+\varepsilon / 2
$$

$$
=\varepsilon
$$

$$
\therefore\left|\mathrm{e}_{\mathrm{p}}\right|<\varepsilon
$$

$\therefore \mathrm{e}_{\mathrm{p}} \rightarrow 0$ as $\mathrm{p} \rightarrow \infty$
From equation (4) $\Rightarrow C_{p}=A_{p} B-e_{p}$
$\Rightarrow C_{p}=A_{p} B$
$\Rightarrow \mathrm{C}_{\mathrm{p}} \rightarrow \mathrm{AB}$ as $\mathrm{p} \rightarrow \infty$
(i.e.), the Cauchy product of two series converges and as the sum AB

Definition 4.14: [Dirichlet Product or Dirichlet Convolution]

Given two series $\sum \mathrm{a}_{\mathrm{n}} \& \sum \mathrm{~b}_{\mathrm{n}}$, define $\mathrm{C}_{\mathrm{n}}=\sum_{d / n} \mathrm{a}_{\mathrm{d}} \mathrm{b}_{\mathrm{n} / \mathrm{d}}\left(\mathrm{n}=1,2 \ldots\right.$) Where $\sum_{d / n}$ means a sum extended over all positive divisors of ' n ' (including i and n). This product $\sum \mathrm{C}_{\mathrm{n}}$ is known as Dirichlet product.

Note:

Take $\mathrm{a}_{0}=\mathrm{b}_{0}=0$ in the Cauchy product $\sum \mathrm{C}_{\mathrm{n}}$, where $\mathrm{C}_{\mathrm{n}}=\sum_{k=0}^{n} \quad \mathrm{a}_{\mathrm{k}} \mathrm{b}_{\mathrm{n}-\mathrm{k}}$
($\mathrm{n}=0,1,2, \ldots \ldots$..)
we get the dirichlet product $\sum C_{n}$
$\& \mathrm{C}_{\mathrm{n}}=\sum_{d / n} \mathrm{a}_{\mathrm{d}} \mathrm{b}_{\mathrm{n} / \mathrm{d}}$
For example,
$C_{6}=a_{1} b_{6}+a_{2} b_{3}+a_{3} b_{2}+a_{6} b_{1}$
$C_{7}=a_{1} b_{7}+a_{7} b_{1}$

Definition 4.15:

A series of the form $\sum_{n=1}^{\infty} a_{n} / n^{s}$ is called a Dirichlet series.

Definition 4.16:

Given two absolutely convergent Dirichlet series, say $\sum_{n=1}^{\infty} a_{n} / n^{s}$ and $\sum_{n=1}^{\infty} b_{n} / n^{s}$, having sums $A(S) \& B(S)$, respectively Then $\sum_{n=1}^{\infty} C_{n} / n^{s}=A(S) B(S)$
where $\mathrm{C}_{\mathrm{n}}=\sum_{d / n} \mathrm{a}_{\mathrm{d}} \mathrm{b}_{\mathrm{n} / \mathrm{d}}$ is the product of two dirichlet series.

Cesaro Summability:

Definition 4.17:

Let S_{n} denote the nth partial sum of the series $\sum a_{n}$ and let $\left\{\sigma_{n}\right\}$ be the sequence of arithmetic means defined by $\sigma_{\mathrm{n}}=\frac{S_{1}+S_{2}+\ldots . S_{n}}{n}$, if $\mathrm{n}=1,2, \ldots$ The series $\sum \mathrm{a}_{\mathrm{n}}$ is said to be Cesaro Summable (or) $\left(\mathrm{C}, 1\right.$) summable If $\left\{\sigma_{n}\right\}$ converges. $\lim _{n \rightarrow \infty} \sigma_{n}=S$, then S is called the Cesaro Sum (or) (C,1) sum of $\sum a_{n}$, and we write $\sum a_{n}=S,(c, 1)$

Example 4.18:

Let an $=\mathrm{Z}-1,,|\mathrm{Z}|=1, \mathrm{Z} \neq 1$.
Then $\mathrm{S}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots \ldots .+\mathrm{a}_{\mathrm{n}}=1+\mathrm{Z}+\mathrm{Z}^{2}+\ldots \ldots .+\mathrm{Z}^{\mathrm{n}-1}=\frac{1-Z^{n}}{1-Z}$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{1-Z^{n}}{1-Z}=\frac{1}{1-Z}-\frac{Z^{n}}{1-Z} \& \sigma_{\mathrm{n}}=\frac{S_{1}+S_{2}+\ldots+S_{n}}{n}$

$$
\begin{aligned}
& =\frac{1}{n}\left[\left(\frac{1}{1-Z}-\frac{Z}{1-Z}\right)+\left(\frac{1}{1-Z}-\frac{z^{2}}{1-Z}\right)+\ldots \ldots . .+\left(\frac{1}{1-Z}-\frac{z^{n}}{1-Z}\right)\right] \\
& =\frac{1}{n}\left[\frac{n}{1-Z}-\frac{Z\left(1+Z+\ldots \ldots . Z^{n-1}\right)}{1-Z}\right.
\end{aligned}
$$

$\therefore \sigma_{\mathrm{n}}=\frac{1}{1-Z}-\frac{Z\left(1-Z^{n}\right)}{n(1-Z)^{2}}$
$\lim _{n \rightarrow \infty} \sigma_{n}=\frac{1}{1-Z}-0=\frac{1}{1-Z}(C, 1)$

Example 4.19:

Let $a_{n}=(-1)^{n+1} \cdot n$
$S_{n}=a_{1}+a_{2}+\ldots \ldots=1-2+3-4+\ldots$
$S_{1}=1 ; S_{2}=-1 ; S_{2}=2 ; S_{4}=-2 \ldots \ldots$.
$\left\{S_{n}\right\}=\{1,-1,2,-2,3,-3 \ldots$

$$
\sigma_{\mathrm{n}}=\left(\mathrm{S}_{1}+\mathrm{S}_{2}+\ldots \ldots+\mathrm{S}_{\mathrm{n}}\right) / \mathrm{n}
$$

$\sigma_{1}=1 ; \sigma_{2}=0 ; \sigma_{3}=2 / 3 ; \sigma_{4}=0 ; \ldots \ldots$.
(i.e.) $\sigma_{n}=\left\{\begin{array}{l}1 \text { if } n \text { is even } \\ \frac{\frac{(n+1)}{2}}{n} \text { if } n \text { is odd }\end{array}\right.$
$\lim _{n \rightarrow \infty} \sigma_{\mathrm{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=1 / 2$ (if n is odd) \& $\lim _{n \rightarrow \infty} \sigma_{\mathrm{n}}=0$ (if n is even)
$\sum a_{n}$ is not $(\mathbf{C}, 1)$ Summable
$a_{n}=\left\{\begin{array}{l}n \text { if } n \text { is odd } \\ -n \text { if } n \text { is even }\end{array}\right.$
' n ' is even
$S_{2 n}=a_{1}+a_{2}+\ldots+a_{2 n}$

$$
\begin{aligned}
& =1-2+3-4+\ldots \ldots \ldots+(2 n-1)-2 n \\
& =[1+3+5+\ldots \ldots \ldots+(2 n-1)-2[1+2+\ldots \ldots .+n] \\
& =n^{2}-2 n(n+1) / 2
\end{aligned}
$$

$S_{2 n}=-n$
' n ' is odd
$S_{2 n+1}=a_{1}+a_{2}+\ldots \ldots+a_{2 n+1}$
$=1-2+3-\ldots \ldots-(2 n)+(2 n+1)$
$=-n+(2 n+1)$
$=\mathrm{n}+1$
$\mathrm{S}_{2 \mathrm{n}+1}=\mathrm{n}+1$
$\sigma_{\mathrm{n}}=\frac{S_{1}+S_{2}+\ldots+S_{2 n}}{2 n}$
$=\frac{1}{2 n}\left(\mathrm{~S}_{1}+\mathrm{S}_{2}+\ldots . .+\mathrm{S}_{2 \mathrm{n}-1}\right)+\left(\mathrm{S}_{2}+\mathrm{S}_{4}+\ldots .+\mathrm{S}_{2 \mathrm{n}}\right)$

$$
\begin{aligned}
& =1 / 2 \mathrm{n}(0)=0 \\
& \sigma_{2 \mathrm{n}}=0 \\
& \lim _{n \rightarrow \infty} \sigma_{\mathrm{n}}=0 \\
& \text { (i.e.), } \lim _{n \rightarrow \infty} \inf \sigma_{\mathrm{n}}=0 \\
& \sigma_{2 \mathrm{n}}=\frac{S_{1}+S_{2}+\ldots .+S_{2 n+1}}{2 n+1} \\
& \quad=\frac{0+(n+1)}{2 n+1} \\
& \sigma_{2 \mathrm{n}+1}=\frac{n+1}{2 n+1} \\
& \lim _{n \rightarrow \infty} \sigma_{2 \mathrm{n}+1}=\lim _{n \rightarrow \infty} \frac{n(1+1 / n)}{n(2+1 / n)}=1 / 2 \\
& \lim _{n \rightarrow \infty} \operatorname{Sup} \sigma_{\mathrm{n}}=1 / 2
\end{aligned}
$$

Theorem 4.20:

If a series is convergent with sum S, then it is also $(C, 1)$ summable with Cesaro sum S.

Proof:

Let $\sum a_{n}$ be a convergent series with sum S.
Let S_{n} be the $n^{\text {th }}$ partial sum of $\sum a_{n}$
let $\left\{\sigma_{n}\right\}$ be the sequence of arithmetic means defined by
$\sigma_{\mathrm{n}}=\frac{\mathrm{S} 1+\mathrm{S}_{2}+\cdots \cdot \mathrm{Sn}}{n}(\mathrm{n}=1,2,) \ldots \ldots$
To prove: $\left\{\sigma_{n}\right\}$ converges $\& \lim _{n \rightarrow \infty} \sigma_{n}=S$
Let $t_{n}=S_{n}-S \& \lim _{n \rightarrow \infty} \tau_{n}=\sigma_{n}-S$
Then

$$
\begin{gathered}
\tau_{\mathrm{n}}=\sigma_{\mathrm{n}}-\mathrm{S}=\frac{\mathrm{S} 1+\mathrm{S}_{2}+\cdots \cdot \mathrm{Sn}}{n}-\mathrm{S} \\
=\frac{\mathrm{S} 1+\mathrm{S}_{2}+\cdots \cdot \mathrm{Sn}-\mathrm{nS}}{n}
\end{gathered}
$$

$$
=\frac{(\mathrm{S} 1-\mathrm{S})+\left(\mathrm{S}_{2}-\mathrm{S}\right)+\cdots+(\mathrm{Sn}-\mathrm{S})}{n}
$$

$\tau_{n}=\frac{t_{1}+t_{2}+\cdots \cdot+t_{n}}{n}$
To prove: $\lim _{n \rightarrow \infty} \tau_{\mathrm{n}}=0$
Given: $\sum a_{\mathrm{n}}$ converges with sum S
The partial sum S_{n} converges to S
$\left\{\mathrm{t}_{\mathrm{n}}\right\} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
$\left\{t_{n}\right\}$ is a bounded sequence
Choose $\mathrm{A}>0$ so that $\left|\mathrm{t}_{\mathrm{n}}\right| \leq \mathrm{A}$
Also $\left\{\mathrm{t}_{\mathrm{n}}\right\} \rightarrow 0$
given $\varepsilon>0$, choose N so that

$$
\begin{equation*}
\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{t}_{\mathrm{n}}\right|<\varepsilon \tag{2}
\end{equation*}
$$

For $\mathrm{n}>\mathrm{N}$

$$
\left|\tau_{\mathrm{n}}\right|=\left|\frac{\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots \cdot \mathrm{t}_{\mathrm{n}}}{n}\right|
$$

$$
\leq\left|\frac{\mathrm{t}_{1}+\mathrm{t}_{2}+\cdots \cdot+\mathrm{t}_{\mathrm{N}}}{n}\right|+\left|\frac{\mathrm{t}_{\mathrm{N}+1}+\mathrm{t}_{\mathrm{N}+2}+\cdots \cdot+\mathrm{t}_{\mathrm{n}}}{n}\right|
$$

$$
\left.\leq \frac{\left|\mathrm{t}_{1}\right|+\left|\mathrm{t}_{2}\right|+\cdots+\mid \mathrm{t}_{\mathrm{N} \mid}}{n}+\frac{\left|\mathrm{t}_{\mathrm{N}+1}\right|+\left|\mathrm{t}_{\mathrm{N}+2}\right|+\cdots \cdot+\left|\mathrm{t}_{\mathrm{n}}\right|}{n} \right\rvert\,
$$

$$
<\text { N.A } / \mathrm{n}+\varepsilon \quad[\text { by equation }(1) \&(2)]
$$

(i.e.) $\left|\tau_{\mathrm{n}}\right|<\mathrm{N} . \mathrm{A} / \mathrm{n}+\varepsilon$
$\lim _{n \rightarrow \infty} \sup \left|\tau_{n}\right| \leq \varepsilon$
$\mathrm{E}>0$ is arbitrary, we get
$\lim _{n \rightarrow \infty}\left|\tau_{n}\right|=\varepsilon$
(i.e.) $\lim _{n \rightarrow \infty} \tau_{n}=0$
(i.e.), $\lim _{n \rightarrow \infty} \sigma_{n}-S=0$
$\Rightarrow \lim _{n \rightarrow \infty} \sigma_{n}=S$
$\sum a_{n}$ is cesaro summable with cesaro sum S.

Note:

If a sequence $\left\{S_{n}\right\}$ converges, then the sequence $\left\{\sigma_{n}\right\}$ of arithmetic means also converges to the same limit, (i.e.), $\left\{\mathrm{S}_{\mathrm{n}}\right\} \rightarrow \mathrm{S}=\left\{\sigma_{\mathrm{n}}\right\} \rightarrow \mathrm{S}$

Note:

Cesaro summability is one of the large class of Summability methods which can be used to assign a 'sum' to an 'infinite series'

Infinite Products:

Definition 4.21:

Given a sequence $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ of real or complex numbers,
Let $\mathrm{p}_{1}=\mathrm{u}_{1}, \mathrm{P}_{2}=, \mathrm{u}_{1} \mathrm{u}_{2}, \mathrm{P}_{\mathrm{n}}=\mathrm{u}_{1} \mathrm{u}_{2} \ldots . . \mathrm{u}_{\mathrm{n}} \prod_{k=1}^{n} u_{k}$
The ordered pair of sequences $\left(\left\{\mathrm{u}_{\mathrm{n}}\right\},\left\{\mathrm{P}_{\mathrm{n}}\right\}\right)$ is called an infinite product (or simply, a product).
The number P_{n} is called the $\mathrm{n}^{\text {th }}$ partial product and u_{n} is called the $\mathrm{n}^{\text {th }}$ factor of the product. The following symbols are used to denote the product
$\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{n}} \prod_{k=1}^{n} u_{k}$

Note:

The symbol $\prod_{n=N+1}^{\infty} u_{\mathrm{n}}$ means $\prod_{n=1}^{\infty} u_{\mathrm{N}+\mathrm{n}}$. We can write $\prod u_{\mathrm{n}}$. If $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ converges, then the infinite product, $\prod_{n=1}^{\infty} u_{\mathrm{n}}$ converges

Definition 4.22:

Given an infinite product $\prod_{n=1}^{\infty} u_{\mathrm{n}}$, let $\mathrm{P}_{\mathrm{n}}=\prod_{k=1}^{n} u_{\mathrm{k}}$
(a) If infinitely many factors u_{n} are zero, we say the product diverges to zero.
(b) If no factor u_{n} is zero, we say the product converges if there exists a number $\mathrm{p} \neq 0$ such that $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ converges u_{n} to P . In this case, p is called the value of the product and we write $\mathrm{p}=\prod_{n=1}^{\infty} u_{\mathrm{n}}$.

If $\left\{\mathrm{P}_{\mathrm{n}}\right\} \rightarrow \mathrm{o}$, we say that the product diverges to ' 0 '
(c) If there exists an N such that $n>N \Rightarrow \mathrm{u}_{\mathrm{n}} \neq 0$, we say $\prod_{n=1}^{\infty} u_{\mathrm{n}}$ converges, provided that $\prod_{n=1}^{\infty} u_{\mathrm{n}}$ converges as described in (b). In this case, the value of the product $\prod_{n=1}^{\infty} u_{\mathrm{n}}$ is $\mathrm{u}_{1}, \mathbf{u}_{2}, \ldots . \mathrm{u}_{\mathrm{N}} \prod_{n=N+1}^{\infty} u_{\mathrm{n}}$
(d) $\prod_{n=1}^{\infty} u_{\mathrm{n}}$ is called divergent if it does not converge as described in (b) or (c)

Note:

- The value of a convergent Infinite product is zero \Leftrightarrow A finite number of factors are zero.
- The convergence of an infinite product is not affected by inserting or removing a finite number of factors, zero or not.
- $\prod_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ converges when the limit exists \& is not zero. Otherwise $\prod_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}$

Example 4.23:

$\prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right) \& \prod_{n=1}^{\infty}\left(1-\frac{1}{n}\right)$ are both divergent.
(i) $\mathrm{P}_{\mathrm{n}}=\left(1+\frac{1}{1}\right) \cdot\left(1+\frac{1}{2}\right) \ldots \ldots\left(1+\frac{1}{n}\right)=\frac{2}{1}, \frac{3}{2} \ldots \ldots \cdot \frac{n}{n-1} \cdot \mathrm{n}+\frac{1}{n}=\mathrm{n}+1$
(ii) $\mathrm{P}_{\mathrm{n}}=\frac{1}{2} \cdot \frac{2}{3} \ldots \ldots \cdot \frac{n-2}{n-1} \cdot \mathrm{n}-\frac{1}{n}=\frac{1}{n}$

In this first case $\mathrm{P}_{\mathrm{n}}=\mathrm{n}+1$ \& In the second case $\mathrm{P}_{\mathrm{n}}=\frac{1}{n}$

Theorem 4.24: [Cauchy condition for Products]

The Infinite product $\prod u_{\mathrm{n}}$ converges if and if for every $\varepsilon>0$, there exist N such that $\mathrm{n}>\mathrm{N}$ $\Rightarrow\left|u_{n+1} \cdot u_{n+2} \ldots \ldots u_{n+k}-1\right|<\varepsilon$ for $K=1,2,3, \ldots$

Proof:

Assume that Πu_{n} converges
Assume that no u_{n} is zero
Let $\mathrm{P}_{\mathrm{n}}=\mathrm{u}_{1}, \mathrm{u}_{2} \ldots . . \mathrm{u}_{\mathrm{n}} \& \mathrm{P}=\lim _{n \rightarrow \infty} P_{\mathrm{n}}$
Since, $u_{n} \neq 0 \Rightarrow P_{n} \neq 0 \Rightarrow P \neq 0$
\therefore there exist $\mathrm{M}>0$ such that $\left|\mathrm{P}_{\mathrm{n}}\right|>\mathrm{M}$

Now. $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ converges
$\left\{\mathrm{P}_{\mathrm{n}}\right\}$ satisfies the Cauchy condition for sequence
given $\varepsilon>0$, there exist N such that
$\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{P}_{\mathrm{n}+\mathrm{k}}-\mathrm{P}_{\mathrm{n}}\right|<\mathrm{N}$ M. $\varepsilon \quad \mathrm{k}=1,2,3 \ldots \ldots$
Now,

$$
\begin{align*}
& \left|\frac{P_{n+K}-P_{n}}{P_{n}}\right|=\left|\frac{P_{n+k}}{P_{n}}-\right| \\
& =\left|\frac{u_{1} u_{2} \ldots \ldots u_{n} u_{n+1} \ldots u_{n+k}}{u_{1} u_{2} \ldots \ldots u_{n}}-1\right| \\
& \begin{aligned}
&\left|\frac{P_{n+K}-P_{n}}{P_{n}}\right|=\left|\mathrm{u}_{\mathrm{n}+1} \mathrm{u}_{\mathrm{n}+2} \ldots . . \mathrm{u}_{\mathrm{n}+\mathrm{k}}-1\right| \ldots \ldots .\left(^{*}\right) \\
& \begin{aligned}
\left|\mathrm{u}_{\mathrm{n}+1} \mathrm{u}_{\mathrm{n}+2} \ldots \ldots . \mathrm{u}_{\mathrm{n}+\mathrm{k}}-1\right|= & \left|\frac{P_{n+K}-P_{n}}{P_{n}}\right| \\
& =\frac{\left|P_{n+K}-P_{n}\right|}{\left|P_{n}\right|} \\
& <\mathrm{M} . \varepsilon / \mathrm{M} \quad \text { (by equation (1) \& (2)) }
\end{aligned} \\
&\left|\mathrm{u}_{\mathrm{n}+1} \mathrm{u}_{\mathrm{n}+2} \ldots \ldots . \mathrm{u}_{\mathrm{n}+\mathrm{k}}-1\right|<\varepsilon \text { for } \mathrm{k}=1,2, \ldots \ldots .
\end{aligned} \tag{*}
\end{align*}
$$

Conversely,
Assume that for all $\varepsilon>0$ there exist N such that
$n>N \Rightarrow\left|u_{n+1} u_{n+2} \ldots \ldots . u_{n+k}-1\right|<\varepsilon$
To prove: $\Pi \mathrm{u}_{\mathrm{n}}$ converges
Then $\mathrm{n}>\mathrm{N} \Rightarrow \mathrm{u}_{\mathrm{n} \neq \mathrm{t}} 0$

Sup $\mathrm{u}_{\mathrm{n}}=0$
From equation (2) $\Rightarrow\left|u_{n+1} u_{n+2} \ldots \ldots . u_{n+k}-1\right|<\varepsilon$

$$
\begin{aligned}
& \Rightarrow|0-1|<\varepsilon \\
& \Rightarrow \varepsilon>1 \text { which is Impossible }
\end{aligned}
$$

$\therefore \mathrm{u}_{\mathrm{n}} \neq 0$

Take $\varepsilon=1 / 2$ in 2,
we get $\left|u_{n+1} u_{n+2} \ldots \ldots . u_{n+k}-1\right|<\frac{1}{2}$
Let N_{0} be the corresponding value of N \&
let $a_{n}=u_{N O+1} u_{N 0+2} \ldots \ldots u_{n+k}$ If $n>N_{0}$
From equation (3) $\Rightarrow\left|u_{N 0+1} u_{N 0+2} \ldots . . u_{n+k}-1\right|<\frac{1}{2}$

$$
\begin{align*}
& \Rightarrow\left|\mathrm{q}_{\mathrm{n}}-1\right|<\frac{1}{2} \\
& \Rightarrow-\frac{1}{2}<\mathrm{q}_{\mathrm{n}}-1<\frac{1}{2} \\
& \Rightarrow-\frac{1}{2}+1<\mathrm{q}_{\mathrm{n}}<\frac{1}{2}+1 \\
& \Rightarrow \frac{1}{2}<\left|\mathrm{q}_{\mathrm{n}}\right|<\frac{3}{2} \tag{4}
\end{align*}
$$

If $\left\{a_{n}\right\}$ converges, it cannot converge to zero
To show that $\left\{\mathrm{q}_{\mathrm{n}}\right\}$ converges
Let $\varepsilon>o$ be given
$\left(^{*}\right) \Rightarrow\left|\frac{q_{n+k}-q_{n}}{q_{n}}\right|<\varepsilon$

$$
\begin{aligned}
& \Rightarrow \frac{\left|q_{n+k}-q_{n}\right|}{\left|q_{n}\right|}<\varepsilon \\
& \Rightarrow\left|\mathrm{q}_{\mathrm{n}+\mathrm{k}}-\mathrm{q}_{\mathrm{n}}\right|<\varepsilon\left|\mathrm{q}_{\mathrm{n}}\right|<\varepsilon .3 / 2 \quad \text { (by equation (4)) } \\
& \Rightarrow\left|\mathrm{q}_{\mathrm{n}+\mathrm{k}}-\mathrm{q}_{\mathrm{n}}\right|<3 \varepsilon / 2
\end{aligned}
$$

$\left\{q_{n}\right\}$ satisfies the Cauchy condition for sequences
$\therefore\left\{\mathrm{q}_{\mathrm{n}}\right\}$ converges
$\therefore \prod u_{\mathrm{n}}$ converges

Note:

Take $\mathrm{K}=1$ in Cauchy condition for Product, we get $\prod u_{\mathrm{n}}$ converges $=\lim _{n \rightarrow \infty} a_{\mathrm{n}}=0$
\therefore We can write $\mathrm{u}_{\mathrm{n}}=1+\mathrm{a}_{\mathrm{n}}$
Thus $\Pi\left(1+a_{n}\right)$ converges $\lim _{n \rightarrow \infty} a_{n}=0$

Theorem 4.25:

Assume that each $a_{n}>0$. Then the product $\Pi\left(1+a_{n}\right)$ converges if and only if the series $\sum a_{n}$ converges

Proof:

Assume that $a_{n}>0$

Let $1+\mathrm{x} \leq \mathrm{e}^{\mathrm{x}} \forall \mathrm{x}$

Let $x \geq 0$

When $x>0$, by Mean-Value Theorem, we get,
$\left[f(x)-f(0)=f^{\prime}\left(x_{0}\right)(x-0)\right]$
(i.e.) $\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{0}=\left(e^{x_{0}}\right)^{\prime}(x-0), \quad 0<\mathrm{x}_{0}<\mathrm{x}$
$\Rightarrow \mathrm{e}^{\mathrm{x}}-1=e^{x_{0}} \cdot \mathrm{x}$
$\Rightarrow \mathrm{e}^{\mathrm{x}}-1=\mathrm{x} . e^{x_{0}}$ where $0<\mathrm{x}_{0}<\mathrm{x}$

We know that
$e^{x_{0}} \geq 1$

From equation (2) $\Rightarrow \mathrm{e}^{\mathrm{x}}-1=\mathrm{x} e^{x_{0}}$
$\geq \mathrm{x} .1$

$$
\mathrm{e}^{\mathrm{x}}-1 \geq \mathrm{x}
$$

Let $S_{n}=a_{1}+a_{=}+$ \qquad $+a_{n}$
$P_{n}=\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots \ldots\left(1+a_{n}\right)$
Clearly, $\left\{\mathrm{S}_{\mathrm{n}}\right\} \&\left\{\mathrm{P}_{\mathrm{n}}\right\}$ are both increasing

To show that $\left\{S_{n}\right\}$ bounded above $\Rightarrow\left\{P_{n}\right\}$ bounded above

Clearly, $a_{1}+a_{2}+\ldots .+a_{n}<a_{1} . a_{2} \ldots a_{n}$

$$
\begin{equation*}
<\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots . .\left(1+a_{n}\right) \tag{3}
\end{equation*}
$$

(i.e.) $S_{n}<P_{n}$

Take $\mathrm{x}=\mathrm{a}_{\mathrm{k}}$ to 1 , where $\mathrm{k}=1,2, \ldots \ldots \mathrm{n}$
$1 \Rightarrow 1+\mathrm{a}_{\mathrm{k}} \leq e^{a_{k}} \quad \mathrm{k}=1,2, \ldots \mathrm{n}$
$\left(1+\mathrm{a}_{1}\right)\left(1+\mathrm{a}_{2}\right) \ldots . .\left(1+\mathrm{a}_{\mathrm{n}}\right) \leq e^{a_{1}} . e^{a_{2}} \ldots \ldots \ldots \ldots . . e^{a_{n}}$
$\left(1+\mathrm{a}_{1}\right)\left(1+\mathrm{a}_{2}\right) \ldots . .\left(1+\mathrm{a}_{\mathrm{n}}\right) \leq e^{a_{1}+a_{2} \ldots+a_{n}}$
$\Rightarrow \mathrm{p}^{\mathrm{n}}<e^{S_{n}}$
From equation (3) \& (4) we get,
$\left\{\mathrm{S}_{\mathrm{n}}\right\}$ is bounded $\Leftrightarrow\left\{\mathrm{P}_{\mathrm{n}}\right\}$ is bounded above
$\left\{\mathrm{S}_{\mathrm{n}}\right\}$ converges $\Leftrightarrow\left\{\mathrm{P}_{\mathrm{n}}\right\}$ converges.
$\sum a_{n}$ converges $\Leftrightarrow \Pi\left(1+a_{n}\right)$ converges $\left[\because\left\{S_{n}\right\} \&\left\{P_{n}\right\}\right.$ both increasing $]$
(i.e.), $\Pi\left(1+a_{n}\right)$ converges $\Leftrightarrow \sum a_{n}$ converges

Note:

In the above Theorem $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ cannot converges to zero
Since each $P_{n} \geq 1$
Also $\mathrm{P}_{\mathrm{n}} \rightarrow \infty$ if $\mathrm{S}_{\mathrm{n}} \rightarrow \infty$

Definition 4.26:

The product $\Pi(1+\mathrm{an})$ is said to converge absolutely if $\Pi\left(1+\left|a_{n}\right|\right)$ converges

Theorem 4.27:

Absolute convergence of $\Pi\left(1+a_{n}\right)$ implies convergence

Proof:

Assume that $\Pi\left(1+\left|a_{n}\right|\right)$ converges

To prove: $\Pi\left(1+\mathrm{a}_{\mathrm{n}}\right)$ converges.
Now, $\Pi\left(1+\left|a_{n}\right|\right)$ converges
By Cauchy Condition for Product Theorem 4.24 we get, $\mathrm{V} \varepsilon>0$, there exist N such that $\mathrm{n}>\mathrm{N}$ $\Rightarrow\left|\left(1+\left|a_{n+1}\right|\right)\left(1+\left|a_{n+2}\right|\right) \ldots \ldots\left(1+\left|a_{n+k}\right|\right)-1\right|<\varepsilon$ for $k=1,2, \ldots$.

Now,
$\left|\left(1+a_{n+1}\right)\left(1+a_{n+2}\right) \ldots\left(1+a_{n+k}\right)-1\right|$
$\leq\left(1+\left|a_{n+1}\right|\right)\left(1+\left|a_{n+2}\right|\right) \ldots \ldots\left(1+\left|a_{n+k}\right|\right)-1$
$\leq \mid\left(1+\left|a_{n+1}\right|\right)\left(1+\left|a_{n+2}\right|\right) \ldots \ldots\left(1+\left|a_{n+k}\right|-1 \mid\right.$
$<\varepsilon \quad$ (by equation (1))
$\therefore \mid\left(1+\left|\mathrm{a}_{\mathrm{n}+1}\right|\right)\left(1+\left|\mathrm{a}_{\mathrm{n}+2}\right|\right) \ldots \ldots\left(1+\left|\mathrm{a}_{\mathrm{n}+\mathrm{k}}\right|-1 \mid<\varepsilon\right.$ for $\mathrm{k}=1,2, \ldots \ldots$
$\therefore \Pi\left(1+\mathrm{a}_{\mathrm{n}}\right)$ converges

Note:

- \quad ($\left.1+\left|\mathrm{a}_{\mathrm{n}}\right|\right)$ converges if and only if $\sum\left|\mathrm{a}_{\mathrm{n}}\right|$ converges
(i.e.) $\Pi\left(1+a_{n}\right)$ converges absolutely if and only if $\sum a_{n}$ converges absolute

Theorem 4.28:

Assume that each $a_{n}>0$. Then the product $\prod\left(1-a_{n}\right)$ converges if and only if the series $\sum a_{n}$ converges.

Proof:

Assume that $\mathrm{a}_{\mathrm{n}}>0$
Suppose $\sum \mathrm{a}_{\mathrm{n}}$ converges
П (1- $\left.\mathrm{a}_{\mathrm{n}}\right)$ converges absolutely
\Rightarrow П (1- $\left.\mathrm{a}_{\mathrm{n}}\right)$ Converges
Conversely,
Assume П (1- $\left.\mathrm{a}_{\mathrm{n}}\right)$ converges

To prove: $\sum \mathrm{a}_{\mathrm{n}}$ converges
Suppose that $\sum \mathrm{a}_{\mathrm{n}}$ diverges,
If $\left\{a_{n}\right]$ does not converge to zero, the $\Pi\left(1-a_{n}\right)$ also diverges
We may assume that $\mathrm{a}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
By discarding finitely many terms,
we may assume that $\mathrm{a}_{\mathrm{n}} \leq 1 / 2$ for all $\mathrm{n} \geq 1$
$1-\mathrm{a}_{\mathrm{n}} \geq 1 / 2 \quad \forall n \geq 1$
$\therefore 1-\mathrm{a}_{\mathrm{n}} \neq 0 \quad \mathrm{Vn} \geq 1$
Let $p_{n}=\left(1-a_{1}\right)\left(1-a_{2}\right) \ldots \ldots . .\left(1-a_{n}\right) \quad$ and
$\mathrm{q}_{\mathrm{n}}=\left(1+\mathrm{a}_{1}\right)\left(1+\mathrm{a}_{2}\right) \ldots\left(1+\mathrm{a}_{\mathrm{n}}\right) \quad \forall \mathrm{n} \geq 1$
Then
$\left(1-a_{k}\right)\left(1+a_{k}\right)=1-a_{k}{ }^{2} \leq 1 \quad(k=1,2, \ldots n)$
$\left(1-a_{k}\right)\left(1+a_{k}\right) \leq 1$
$\Rightarrow \mathrm{p}_{\mathrm{n}} \mathrm{q}_{\mathrm{n}} \leq 1 \mathrm{Vn} \geq 1$
$\Rightarrow \mathrm{p}_{\mathrm{n}} \leq 1 / \mathrm{q}_{\mathrm{n}} \quad \forall \mathrm{n} \geq 1$
$\therefore \sum \mathrm{a}_{\mathrm{n}}$ diverges, then $\Pi\left(1+\mathrm{a}_{\mathrm{n}}\right)$ diverges (by Theorem8.52)
$\therefore \mathrm{q}_{\mathrm{n}} \rightarrow \infty$ an $\mathrm{n} \rightarrow \infty$
$\therefore 1 / \mathrm{q}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
(i.e.) $\mathrm{p}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
$\therefore \prod_{n=1}^{\infty}\left(1-\mathrm{a}_{\mathrm{n}}\right)$ diverges to 0
\therefore our assumption is wrong
$\therefore \sum \mathrm{a}_{\mathrm{n}}$ converges

Power Series

Definition 4.29:

An infinite series of the form $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \ldots \ldots$ (1) is called a power series in $z-z_{0}$. Here z, z_{0} and $a_{n}(n=0,1, \ldots)$ are complex numbers.

- With every power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, there is associated a disk, called the disk of convergence, such that the series converges absolutely for every z interior to this disk and diverge for every z outside this disk.
- The centre of the disk is at z_{0}.
- The radius of the disk is called the radius of convergence of the power series. (The radius may be o or $+\infty$ in extreme cases).

Theorem 4.30:

Given a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, let $\lambda=\lim _{n \rightarrow \infty} \sup _{n} \sqrt{\left|a_{n}\right|}, r=\frac{1}{\lambda}$, (where $r=0$ if $\lambda=$ $+\infty$ and $r=+\infty$ if $\lambda=0$). Then the series converges absolutely if $\left|z-z_{0}\right|<r$ and diverges if $\left|z-z_{0}\right|>r$. Furthermore, the series converges uniformly on every compact subset interior to the disk of convergence.

Proof:

Given $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is a power series.
Let $\lambda=\lim _{n \rightarrow \infty} \sup _{n}^{\left|a_{n}\right|}$
Let $r=\frac{1}{\lambda}$
First to prove that $\sum a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely if $\left|z-z_{0}\right|<r$ and $\sum a_{n}\left(z-z_{0}\right)^{n}$ diverges if $\left|z-z_{0}\right|>r$.

Now, $r=\frac{1}{\lambda}$
$\lambda=\frac{1}{r}$
$\lim _{n \rightarrow \infty} \sup _{n}^{\left|a_{n}\right|}=\frac{1}{r}$
$\lim _{n \rightarrow \infty} \sup _{n}^{\left|a_{n}\left(z-z_{0}\right)^{n}\right|}=\frac{\left|z-z_{0}\right|}{r}$
By Root test theorem,
$\sum a_{n}\left(z-z_{0}\right)^{n}$ converges absolutely if $\left|z-z_{0}\right|<r$ and $\sum a_{n}\left(z-z_{0}\right)^{n}$ diverges if $\left|z-z_{0}\right|>$ r.

Let T be a compact subset of the disk of convergence there exists $p \in T$ such that $z \in T$ implies
$\left|z-z_{0}\right| \leq\left|p-z_{0}\right|<r$
$\left|a_{n}\left(z-z_{0}\right)^{n}\right| \leq\left|a_{n}\left(p-z_{0}\right)^{n}\right|$ for all $z \in T$
We have $\left|a_{n}\left(p-z_{0}\right)^{n}\right|$ converges.
Therefore, by Weiestrass M - test, we get
$\sum a_{n}\left(z-z_{0}\right)^{n}$ converges uniformly.

Note:

If the limit $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ exists (or if this limit is $+\infty$) its value is also equal to the radius of convergence of $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$.

Example 4.31:

The two series $\sum_{n=0}^{\infty} z^{n}$ and $\sum_{n=0}^{\infty}\left(z^{n} / n^{2}\right)$ have the same radius of convergence, namely $\mathrm{r}=1$.
On the boundary of the disk of convergence $\left|z-z_{0}\right|=r, \sum_{n=0}^{\infty} z^{n}$ converges nowhere and $\sum_{n=0}^{\infty} \frac{z^{n}}{n^{2}}$ converges everywhere.

For, $\sum_{n=0}^{\infty} z^{n}=\sum_{n=0}^{\infty} 1(z-0)^{n}$
Here $a_{n}=1$
Therefore, Radius of convergence of $\sum_{n=0}^{\infty} z^{n}=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{1}\right|=1$
Also, $\sum_{n=0}^{\infty} \frac{z^{n}}{n^{2}}=\sum_{n=0}^{\infty} \frac{1}{n^{2}}\left(z-z_{0}\right)^{n}$
Here $a_{n}=\frac{1}{n^{2}}$

Therefore, radius of convergence of
$\sum_{n=0}^{\infty} \frac{z^{n}}{n^{2}}=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1 / n^{2}}{1 /(n+1)^{2}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{n+1}{n}\right)^{2}\right|=\lim _{n \rightarrow \infty}\left|\left(1+\frac{1}{n}\right)^{2}\right|=1$

Example 4.32:

Consider the series $\sum_{n=0}^{\infty} \frac{z^{n}}{n}$
$\sum_{n=0}^{\infty} \frac{z^{n}}{n}=\sum_{n=0}^{\infty} \frac{1}{n}(z-0)^{n}$
Here $a_{n}=\frac{1}{n}$
\therefore Radius of convergence
$=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{n}}{\frac{1}{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n+1}{n}\right|=\lim _{n \rightarrow \infty}\left|1+\frac{1}{n}\right|=1$
$\therefore r=1$
By Dirichlet Test theorem, $\sum_{n=0}^{\infty} \frac{z^{n}}{n}$ converge everywhere else on the boundary.

Theorem 4.33:

Assume that the power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges for each $z \in B\left(z_{0} ; r\right)$. Then the function ' f ' defined by the equation $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, if $z \in B\left(z_{0} ; r\right)$ is continuous on $B\left(z_{0} ; r\right)$.

Proof:

Let $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} f_{n}(z)$ for all $z \in B\left(z_{0} ; r\right)$ where $f_{n}(z)=a_{n}\left(z-z_{0}\right)^{n}$. Given that $f(z)$ converges for each $z \in B\left(z_{0} ; r\right)$

Each point in $B\left(z_{0} ; r\right)$ belongs to some compact subset of $B\left(z_{0} ; r\right)$.
Let that compact subset be ' s '.
$\therefore f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} f_{n}(z)$ converges uniformly on 's' $\ldots \ldots$. (1) Now, $f_{n}(z)=$ $a_{n}\left(z-z_{0}\right)^{n}$ is a polynomial function

Since every polynomial function is continuous,
' f_{n} ' is continuous on S
By equation (1) and (2) also using theorem 5.14, we get
' f ' is continuous on every compact subset ' S ' of $B\left(z_{0} ; r\right)$

Hence ' f ' is continuous on $B\left(z_{0} ; r\right)$.

Theorem 4.34:

Assume that $\sum a_{n}\left(Z-Z_{o}\right)^{n}$ converges if $Z \in B\left(Z_{o} ; r\right)$. Suppose that the equation $f(Z)=$ $\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n}$, is known to be valid for each ' Z ' in some open subset ' S^{\prime} of $B\left(Z_{o} ; r\right)$.Then for each point Z_{1} in S, there exists a neighbourhood $B\left(Z_{1} ; r\right) \subseteq S$ in which ' f ' has a power series expansion of the form $f(Z)=\sum_{k=0}^{\infty} b_{k}\left(Z-Z_{1}\right)^{k}$,
where $b_{k}=\sum_{n=k}^{\infty}\binom{n}{k} a_{n}\left(Z_{1}-Z_{o}\right)^{n-k} \quad(k=0,1,2, \ldots)$

Proof:

Assume that $\sum a_{n}\left(Z-Z_{o}\right)^{n}$ converges if $Z \in B\left(Z_{o} ; r\right)$
Given: $f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n}$ is valid $\forall Z \in S \subseteq B\left(Z_{o} ; r\right)$
To Prove: $\forall Z_{1} \in S$, there exists $B\left(Z_{1} ; r\right) \subseteq S$
such that $f(Z)=\sum_{k=0}^{\infty} b_{k}\left(Z-Z_{1}\right)^{k}$,
where $b_{k}=\sum_{n=k}^{\infty}\binom{n}{k} a_{n}\left(Z_{1}-Z_{o}\right)^{n-k} \quad(k=0,1,2, \ldots)$
Now, $Z \in S$ we have

$$
\left.\begin{array}{l}
f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n} \\
f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{1}+Z_{1}-Z_{o}\right)^{n} \ldots \ldots \ldots \text { (2) } \\
=\sum_{n=0}^{\infty} a_{n} \sum_{k=0}^{\infty}\binom{n}{k}\left(Z-Z_{1}\right)^{k}\left(Z_{1}-Z_{o}\right)^{n-k} \\
\qquad\left[\because(a+b)^{n}=\sum_{r=0}^{n} n_{C_{r}} a^{n-r} b^{r}\right]
\end{array}\right\} \begin{aligned}
& f(Z)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n}(k) \quad \ldots \ldots \ldots .(3) \\
& \text { Where } C_{n}(k)= \begin{cases}\binom{n}{k} a_{n}\left(Z-Z_{1}\right)^{k}\left(Z_{1}-Z_{o}\right)^{n-k} & \text { if } k \leq n \\
0 & \text { if } k>n\end{cases} \tag{3}
\end{aligned}
$$

Choose R so that $B\left(Z_{1} ; R\right) \subseteq S$ and assume that $Z \in B\left(Z_{1} ; R\right)$
Claim: $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n}(k)$ converges absolutely

Now, $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|C_{n}(k)\right|=|f(Z)|$

$$
\begin{aligned}
& =\left|\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{1}+Z_{1}-Z_{o}\right)^{n}\right| \quad(\mathrm{by}(1)) \\
& =\sum_{n=0}^{\infty}\left|a_{n}\right|\left(\left|Z-Z_{1}\right|+\left|Z_{1}-Z_{o}\right|\right)^{n}
\end{aligned}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|C_{n}(k)\right|=\sum_{n=0}^{\infty}\left|a_{n}\right|\left(Z_{2}-Z_{o}\right)^{n} \tag{4}
\end{equation*}
$$

Where $Z_{2}=Z_{o}+\left|Z-Z_{1}\right|+\left|Z_{1}-Z_{o}\right|$
Now, $\left|Z_{2}-Z_{o}\right|=\left|Z-Z_{1}\right|+\left|Z_{1}-Z_{o}\right|$

$$
\begin{aligned}
& <R+\left|Z_{1}-Z_{o}\right| \quad\left(\because Z \in B\left(Z_{1} ; R\right)\right) \\
& \leq r
\end{aligned}
$$

$\therefore\left|Z_{2}-Z_{o}\right| \leq r$
i.e; $Z_{2} \in B\left(Z_{o} ; r\right)$
$\therefore \sum_{n=0}^{\infty}\left|a_{n}\right|\left(Z_{2}-Z_{o}\right)$ Converges (by equation (1))
(i.e) equation (4) becomes $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|C_{n}(k)\right|$ converges
(i. e) $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n}(k)$ converges absolutely
\therefore By theorem 4.10, We get $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n}(k)=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} C_{n}(k)$
$\therefore(3) \Rightarrow f(Z)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n}(k)$
$=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} C_{n}(k)$
$=\sum_{k=0}^{\infty} \sum_{k=0}^{\infty}\binom{n}{k} a_{n}\left(Z-Z_{1}\right)^{k}\left(Z_{1}-Z_{o}\right)^{n-k}$
$\therefore f(Z)=\sum_{k=0}^{\infty} b_{k}\left(Z-Z_{1}\right)^{k}$,
where $b_{k}=\sum_{n=k}^{\infty}\binom{n}{k} a_{n}\left(Z_{1}-Z_{o}\right)^{n-k} \quad(k=0,1,2, \ldots)$

Note:

In the course of the proof, we have shown that we may use any $R>0$ that satisfies the condition $B\left(Z_{1} ; r\right) \subseteq S$

Theorem 4.35:

Assume that $\sum a_{n}\left(Z-Z_{o}\right)^{n}$ converges for each Z in $B\left(Z_{o} ; r\right)$. Then the function ' f ' defined by the equation $f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n}$, if $Z \in B\left(Z_{o} ; r\right)$ has a derivative $f^{\prime}(Z)$ for each Z in $B\left(Z_{o} ; r\right)$, given by $f^{\prime}(Z)=\sum_{n=0}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1}$

Proof:

Assume that $\sum a_{n}\left(Z-Z_{o}\right)^{n}$ converges for each $Z \in B\left(Z_{o} ; r\right)$
Define ' f ' by $f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n}$, if $Z \in B\left(Z_{o} ; r\right)$
To Prove: $f(Z)$ has a derivative $f^{\prime}(Z)$ such that $f^{\prime}(Z)=\sum_{n=0}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1} \forall Z \in$ $B\left(Z_{o} ; r\right)$

Assume that $Z_{1} \in B\left(Z_{o} ; r\right)$ if $Z \in B\left(Z_{1} ; R\right), Z \neq Z_{1}$, We have
$f(Z)=\sum_{k=0}^{\infty} b_{k}\left(Z-Z_{1}\right)^{k}$, where $b_{k}=\sum_{n=k}^{\infty}\binom{n}{k} a_{n}\left(Z_{1}-Z_{o}\right)^{n-k}$
Now,

$$
\begin{align*}
& f(Z)=\sum_{k=0}^{\infty} b_{k}\left(Z-Z_{1}\right)^{k} \\
\Rightarrow & f(Z)=b_{o}\left(Z-Z_{1}\right)^{0}+b_{1}\left(Z-Z_{1}\right)^{1}+\sum_{k=2}^{\infty} b_{k}\left(Z-Z_{1}\right)^{k} \\
\therefore & f(Z)=b_{o}+b_{1}\left(Z-Z_{1}\right)+\sum_{k=1}^{\infty} b_{k+1}\left(Z-Z_{1}\right)^{k+1} \quad \ldots \ldots \tag{3}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \quad b_{o}=\sum_{n=0}^{\infty}\binom{n}{0} a_{n}\left(Z_{1}-Z_{o}\right)^{n-0} \quad \text { (by equation (2)) } \\
& \Rightarrow b_{o}=\sum_{n=0}^{\infty} 1 . a_{n}\left(Z_{1}-Z_{o}\right)^{n} \\
& \text { i.e; } b_{o}=\sum_{n=0}^{\infty} a_{n}\left(Z_{1}-Z_{o}\right)^{n} \\
& \begin{aligned}
& \Rightarrow b_{o}=f\left(Z_{1}\right) \quad \quad(\text { by equation (1)) } \\
& \therefore(3) \Rightarrow f(Z)=f\left(Z_{1}\right)+b_{1}\left(Z-Z_{1}\right)+\sum_{k=1}^{\infty} b_{k+1}\left(Z-Z_{1}\right)^{k+1} \\
& \Rightarrow f(Z)-f\left(Z_{1}\right)=b_{1}\left(Z-Z_{1}\right)+\sum_{k=1}^{\infty} b_{k+1}\left(Z-Z_{1}\right)^{k+1} \\
& \Rightarrow f(Z)-f\left(Z_{1}\right)=\left(Z-Z_{1}\right)\left[b_{1}+\sum_{k=1}^{\infty} b_{k+1}\left(Z-Z_{1}\right)^{k}\right] \\
& \Rightarrow \frac{f(Z)-f\left(Z_{1}\right)}{\left(Z-Z_{1}\right)}=b_{1}+\sum_{k=1}^{\infty} b_{k+1}\left(Z-Z_{1}\right)^{k} \\
& \Rightarrow \lim _{Z \rightarrow Z_{1}} \frac{f(Z)-f\left(Z_{1}\right)}{\left(Z-Z_{1}\right)}=\lim _{Z \rightarrow Z_{1}}\left[b_{1}+\sum_{k=1}^{\infty} b_{k+1}\left(Z-Z_{1}\right)^{k}\right] \\
&=b_{1}
\end{aligned}
\end{aligned}
$$

i.e; $f^{\prime}\left(Z_{1}\right)=\lim _{n \rightarrow \infty} \frac{f(Z)-f\left(Z_{1}\right)}{\left(Z-Z_{1}\right)}=b_{1}$

Hence $f^{\prime}\left(Z_{1}\right)$ exists and $f^{\prime}\left(Z_{1}\right)=b_{1}$
Now, (2) becomes $b_{k}=\sum_{n=k}^{\infty}\binom{n}{k} a_{n}\left(Z_{1}-Z_{o}\right)^{n-k}$

$$
\begin{gathered}
\Rightarrow b_{1}=\sum_{n=1}^{\infty}\binom{n}{1} a_{n}\left(Z_{1}-Z_{o}\right)^{n-1} \\
\Rightarrow b_{1}=\sum_{n=1}^{\infty} n a_{n}\left(Z_{1}-Z_{o}\right)^{n-1}
\end{gathered}
$$

(4) $\Rightarrow f^{\prime}\left(Z_{1}\right)=\sum_{n=1}^{\infty} n a_{n}\left(Z_{1}-Z_{o}\right)^{n-1}$
\therefore ' Z_{1}^{\prime} ' is an arbitrary point of $B\left(Z_{o} ; r\right)$, then $f^{\prime}(Z)=\sum_{n=1}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1}$

Note: [Hadamard's Formula]

The radius of convergence of the power series $\sum a_{n}\left(Z-Z_{o}\right)^{n}$ is given by R.O.C $=\left(\lim _{n \rightarrow \infty} \sup _{n} \sqrt{\left|a_{n}\right|}\right)^{-1}$

Theorem 4.36:

The power series $f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n}$ and the derivative of a power series $f^{\prime}(Z)=$ $\sum_{n=1}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1}$ have the same radius of convergence.

Proof:

Given: $f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n}$ and $f^{\prime}(Z)=\sum_{n=1}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1}$
Now, $f^{\prime}(Z)=\sum_{n=1}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1}$

$$
=\sum_{n=0}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1}
$$

$$
=\frac{1}{Z-Z_{o}} \sum_{n=0}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n}
$$

$$
\begin{equation*}
\therefore \quad f^{\prime}(Z)=\frac{1}{Z-Z_{o}} \sum_{n=0}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n} \tag{2}
\end{equation*}
$$

Clearly, both the series (1) and (2) converge for the same values of ' Z '
\therefore We apply Hadamard formula in (2)

$$
\begin{aligned}
\text { R.O.C of } f^{\prime}(Z) & =\left(\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|n a_{n}\right|}\right)^{-1} \\
& =\left(\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|a_{n}\right|}\right)^{-1} \\
& =\text { R.O.C of } f(Z)
\end{aligned} \quad\left[\because \lim _{n \rightarrow \infty} \sqrt[n]{n}=1\right]
$$

\therefore R.O.C of $f^{\prime}(Z)=$ R.O.C of $f(Z)$

Note:

By repeated application of $f^{\prime}(Z)=\sum_{n=1}^{\infty} n a_{n}\left(Z-Z_{o}\right)^{n-1}$, we find that for each $k=0,1,2, \ldots$, the derivative $f^{k}(Z)$ exists in $B\left(Z_{o} ; r\right)$ and is given by the series
$f^{(k)}(Z)=\sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_{n}\left(Z-Z_{o}\right)^{n-k}$
Put $Z=Z_{o}$ in (1), we get
$f^{(k)}\left(Z_{o}\right)=k!a_{k} \quad k=0,1,2, \ldots$
This equation tells us that if two power series $\sum a_{n}\left(Z-Z_{o}\right)^{n}$ and $\sum b_{n}\left(Z-Z_{o}\right)^{n}$ both represent the same function in a neighbourhood $B\left(Z_{o} ; r\right) \therefore a_{n}=b_{n} \quad \forall n$ (i.e.) The power series expansion of a function ' f ' about a given point Z_{o} is uniquely determined and $f(Z)=\sum_{n=0}^{\infty} a_{n}\left(Z-Z_{o}\right)^{n}$ becomes $f(Z)=\sum_{n=0}^{\infty} \frac{f^{n}\left(Z_{o}\right)}{n!}\left(Z-Z_{o}\right)^{n} \quad(b y(2))$ valid for each Z in the disk of convergence.

Multiplication of Power Series

Theorem 4．37：

Given two power series expansions about the origin，say
$\mathrm{f}(\mathrm{z})=\sum_{n=0}^{\infty} a$ 团 z^{n}, if $z \in B(0 ; r) \& \mathrm{~g}(\mathrm{z})=\sum_{n=0}^{\infty} b$ 回 z^{n} ，if $z \in B(0 ; R)$
Then the product $f(z), g(z)$ is given by the power series
$f(z) g(z)=\sum_{n=0}^{\infty} c$ 目 ${ }^{\mathrm{n}}$ ，if $z \in B(0 ; r) \cap B(0 ; R)$ where $\mathrm{c}_{\mathrm{n}}=\sum_{n=0}^{\infty} a$ ar？
（ $n=0,1,2, \ldots$ ）

Proof：

Given $f(z)=\sum_{n=0}^{\infty} a$ 目 z^{n} ，if $z \in B(0 ; r)$

$$
\begin{equation*}
g(z)=\sum_{n=0}^{\infty} b z^{\mathrm{n}} \text {, if } z \epsilon B(0 ; R) \tag{1}
\end{equation*}
$$

Then $f(z)=\sum_{n=0}^{\infty} a$ 目 ${ }^{\mathrm{n}}$ converges absolutely（with sum $\mathrm{f}(\mathrm{z})$ ）

$$
\& g(z)=\sum_{n=0}^{\infty} b \text { 回 } z^{\mathrm{n}} \text { converges absolutely }(\text { with sum } \mathrm{g}(\mathrm{z}))
$$

The Cauchy product of two series（1）\＆（2）is

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a \text { 回 } z^{\mathrm{k}} b \text { 回 } \mathrm{z}^{\mathrm{n}-\mathrm{k}}\right) & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a \text { ? }\right) ~ \\
& =\sum_{n=0}^{\infty} c \text { 回 } z^{\mathrm{n}}
\end{aligned}
$$

where c 回 $\sum_{n=0}^{\infty} a$ ？b ？
Here $\sum_{n=0}^{\infty} a$ 团 z^{n} converges absolutely with sum $\mathrm{f}(\mathrm{z})$ on $B(0 ; r)$ and $\sum_{n=0}^{\infty} b$ 回 z^{n} converges absolutely with sum $\mathrm{g}(\mathrm{z})$ on $\mathrm{B}(0 ; \mathrm{R})$ ．

Then by Merten＇s theorem 4．13，
The Cauchy product $\sum_{n=0}^{\infty} c$ 目 ${ }^{\mathrm{n}}$ converges with sum $f(z) g(z)$ on $B(0 ; r) \cap B(0 ; R)$ ．
（i．e．）$\sum_{n=0}^{\infty} c$ 目 $=f(z) g(z)$ if $z \in B(0 ; r) \cap B(0 ; R)$ ．
Hence $f(z) g(z)=\sum_{n=0}^{\infty} c$ 回 z^{n} if $z \in B(0 ; r) \cap B(0 ; R)$
where c 回 $\sum_{n=0}^{\infty} a b b$ 回 $(n=0,1,2, \ldots)$

The Taylor's series generated by a function

Definition 4.38:

Let f be a real-valued function defined on an interval I in R. If f has derivatives of every order at each point of I, we write $f \epsilon c^{\infty}$ on I

Note:

- If $f \epsilon c^{\infty}$ on some neighborhood of a point c , then the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{f^{(\mathrm{n})}(c)}{n!}(x-c)^{\mathrm{n}} \tag{1}
\end{equation*}
$$

is called the Taylor's series about c generated by f .

- To indicate that f generates this series, we write

$$
f(x) \sim \sum_{n=0}^{\infty} \frac{f^{(\mathrm{n})}(c)}{n!}(x-c)^{\mathrm{n}} \ldots \ldots \text { (2) }
$$

- Taylor's Formula states that if $f \epsilon c \infty 0$ on the closed interval $[\mathrm{a}, \mathrm{b}]$, then for every $\mathrm{x} \epsilon[\mathrm{a}$, b] \& for every n, we have
$\mathrm{f}(\mathrm{x})=\sum_{k=0}^{n-1} \frac{f^{(\mathrm{k})}(c)}{k!}(x-c)^{\mathrm{k}}+\sum_{n=0}^{\infty} \frac{f^{(\mathrm{n})}(c)}{n!}(x-c)^{\mathrm{n}} \ldots \ldots \ldots$ (3) , there exists $x_{1} \in[x, c]$.
- The point x_{1} depends on $x, c \&$ on n .
- Hence a necessary and sufficient condition for the Taylor's series to converge to $f(x)$
is $\sum_{n=0}^{\infty} \frac{f^{(\mathrm{n})}(c)}{n!}(x-c)^{\mathrm{n}}=0$
- In practice it may be quite difficult to deal with this limit because of the unknown position of x_{1}.
- In some cases, however, a suitable upper bound can be obtained for $\mathrm{f}^{(\mathrm{n})}\left(\mathrm{x}_{1}\right)$ and the limit can be shown to be zero.
- Since $\frac{A^{\mathrm{n}}}{n!} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty \forall \mathrm{n}$, (4) will hold if there exists $M>0 \ni:\left|f^{(\mathrm{n})}(x)\right| \leq M^{\mathrm{n}} \forall x \in[a, b]$.
- In other words, the Taylor's series of a function f converges if the nth derivative $f^{(n)}$ grows go faster than the nth power of some positive integer.

Theorem 4.39

Assume that $f \epsilon c^{\infty}$ on $[\mathrm{a}, \mathrm{b}]$ and let $c \epsilon[a, b]$. Assume that the is a neighborhood $\mathrm{B}(\mathrm{C})$ and a constant M (which might depend on C) such that $\left|f^{(\mathrm{n})}(x)\right| \leq M^{\mathrm{n}}$ for every each $x \in B(C) \cap$
$[a, b]$ and every $n=1,2, \ldots$. Then, for each $x \in B(C) \cap[a, b]$, we have $f(x)=$ $\sum_{n=0}^{\infty} \frac{f^{(\mathrm{n})}(c)}{n!}(x-c)^{\mathrm{n}}$.

Proof:

Given, $f \epsilon c^{\infty}$ on $[\mathrm{a}, \mathrm{b}]$ and $c \epsilon[a, b]$
Then by Taylors formula,
$\forall x \in[a, b]$ and $\forall n$, we have
$f(x)=\sum_{n=0}^{n-1} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+\frac{f^{(n)}\left(x_{1}\right)}{n!}(x-c)^{\mathrm{n}}$, there exists $x_{1} \in\left[x_{2}, c\right]$

Assume that there exists a neighbourhood $B(C)$ and a constant M (depends on C) \ni $:\left|f^{(\mathrm{n})}(x)\right| \leq M^{\mathrm{n}} \forall x \in[a, b]$

Clearly, $x_{1} \epsilon B(C) \cap[a, b]$ therefore, $\left|f^{(\mathrm{n})}\left(x_{1}\right)\right| \leq M^{\mathrm{n}}$
$\Rightarrow-M^{n} \leq f^{(n)}\left(x_{1}\right) \leq M^{n}$
$\Rightarrow f^{(n)}\left(x_{1}\right) \leq M^{n}$
$\Rightarrow \frac{f^{(n)}\left(x_{1}\right)}{n!} \leq \frac{M^{n}}{n!}$
We know that, $\frac{M^{n}}{n!} \rightarrow 0$ as $n \rightarrow \infty \forall M$
Therefore, by comparison test
$\frac{f^{(n)}\left(x_{1}\right)}{n!} \rightarrow 0$ as $n \rightarrow \infty$
$\therefore \frac{f^{(n)}\left(x_{1}\right)}{n!}(x-C)^{n} \rightarrow 0$ as $n \rightarrow \infty$
That is, $\frac{f^{(n)}\left(x_{1}\right)}{n!}(x-C)^{n}=0$
$\operatorname{Now}(1) \Rightarrow \lim _{n \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} \sum_{n=0}^{n-1} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+\lim _{n \rightarrow \infty} \frac{f^{(\mathrm{n})}\left(x_{1}\right)}{n!}(x-c)^{\mathrm{n}}$
$\Rightarrow f(x)=\lim _{n \rightarrow \infty} \sum_{n=0}^{n-1} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+0 \quad$ by (2)
$\Rightarrow f(x)=\sum_{n=0}^{\infty} \frac{f^{(\mathrm{n})}(c)}{n!}(x-c)^{\mathrm{n}}$
(i.e.) $f(x)=\sum_{n=0}^{\infty} \frac{f^{(\mathrm{n})}(c)}{n!}(x-c)^{\mathrm{n}} \forall x \in B(C) \cap[a, b]$.

Berstein's Theorem

Theorem 4.40:

Assume f has a continuous derivative of order $\mathrm{n}+1$ in some open interval I containing c , and define $\mathrm{E}_{\mathrm{n}}(\mathrm{x})$ for x in I by the equation
$\mathrm{f}(\mathrm{x})=\sum_{k=0}^{n} \frac{f^{(k))}(c)}{k!}(x-c)^{\mathrm{k}}+\mathrm{E}_{\mathrm{n}}(\mathrm{x})$. Then $\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$

Proof:

Assume f has a continuous derivative of order $\mathrm{n}+1$ in some open interval I containing ' c '
Define: E_{n} for x in I by $\mathrm{f}(\mathrm{x})=\sum_{k=0}^{n} \frac{f^{(k))}(c)}{k!}(x-c)^{\mathrm{k}}+\mathrm{E}_{\mathrm{n}}(\mathrm{x})$
To prove: $\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$
We prove the theorem by induction on n
For $\mathrm{n}=1$
Equation $(1) \Rightarrow \mathrm{f}(\mathrm{x})=\sum_{k=0}^{n} \frac{f^{(k))}(c)}{k!}(x-c)^{\mathrm{k}}+\mathrm{E}_{\mathrm{n}}(\mathrm{x})$
$\mathrm{f}(\mathrm{x})=\frac{f^{(0)}(c)}{0!}(\mathrm{x}-\mathrm{c})^{0}+\frac{f^{(1)}(c)}{1!}(\mathrm{x}-\mathrm{c})^{1}+\mathrm{E}_{1}(\mathrm{x})$
$\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{c})+f^{\prime}(\mathrm{c})(\mathrm{x}-\mathrm{c})+\mathrm{E}_{1}(\mathrm{x})$
$\mathrm{E}_{1}(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})-f^{\prime}(\mathrm{c})(\mathrm{x}-\mathrm{c})$
$\mathrm{E}_{1}(\mathrm{x})=\int_{c}^{x}\left[f^{\prime}(t)-f^{\prime}(c)\right] \mathrm{dt}$
$\mathrm{E}_{1}(\mathrm{x})=\int_{c}^{x} u(t) d v(t)$ where $\mathrm{u}(\mathrm{t})=f^{\prime}(\mathrm{t})-f^{\prime}(\mathrm{c}) ; \mathrm{v}(\mathrm{t})=\mathrm{t}-\mathrm{x}$
$\left.\mathrm{E}_{1}(\mathrm{x})=u(t) v(t)\right]_{c}^{x}-\int_{c}^{x} v(t) d u(t) \quad\left[\int u d v=u v-\int v d u\right]$
$\mathrm{E}_{1}(\mathrm{x})=u(x) v(x)-u(c) v(c)-\int_{c}^{x}(t-x) f^{\prime \prime}(t) d t$
$\mathrm{E}_{1}(\mathrm{x})=[0-0]-\int_{c}^{x}(t-x) f^{\prime \prime}(t) \mathrm{dt}$
$\mathrm{E}_{1}(\mathrm{x})=\int_{c}^{x}(x-t) f^{\prime \prime}(t) \mathrm{dt}$
The result is true for $\mathrm{n}=1$
Now, we assume that the result is true for ' n '
(i.e.) $\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$

Now, to prove the result is true for ' $\mathrm{n}+1$ '
From equation $(1) \Rightarrow \mathrm{f}(\mathrm{x})=\sum_{k=0}^{n+1} \frac{\left.f^{(k)}\right)(c)}{k!}(x-c)^{\mathrm{k}}+\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})$
$\mathrm{f}(\mathrm{x})=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{\mathrm{k}}+\frac{f^{(n+1)}(c)}{(n+1)!}(x-c)^{\mathrm{n}+1}+\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})$
$\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})=\mathrm{f}(\mathrm{x})-\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{\mathrm{k}}-\frac{f^{(n+1)}(c)}{(n+1)!}(x-c)^{\mathrm{n}+1}$
$\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})=\mathrm{E}_{\mathrm{n}}(\mathrm{x})-\frac{f^{(n+1)}(c)}{(n+1)!}(x-c)^{\mathrm{n}+1} \quad$ (by equation (1))
$\mathrm{E}_{\mathrm{n}+1}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}-\frac{f^{n+1}(c)}{(n+1)!} \int_{c}^{x}(n+1)(x-t)^{n} \mathrm{dt}$
$\mathrm{E}_{\mathrm{n}+1}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(n+1)}(\mathrm{t}) \mathrm{dt}-\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(n+1)}(\mathrm{c}) \mathrm{dt}$
$\mathrm{E}_{\mathrm{n}+1}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n}\left[\mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t})-\mathrm{f}^{(\mathrm{n}+1)}(\mathrm{c})\right] \mathrm{dt}$
$\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})=\int_{c}^{x} u(t) d v(t)$ where $\mathrm{u}(\mathrm{t})=\mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t})-\mathrm{f}^{\mathrm{n}+1)}(\mathrm{c}) ; \mathrm{dv}(\mathrm{t})=(\mathrm{x}-\mathrm{t})^{\mathrm{n}} . \mathrm{dt}$
$\left.\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})=u(t) v(t)\right]_{c}^{x}-\int_{c}^{x} v(t) d u(t) \quad\left[\int u d v=u v-\int v d u\right]$
$\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})=\frac{1}{n!}[u(x) v(x)-u(c) v(c)]-\int_{c}^{x} \frac{-(x-t)^{n+1}}{n+1} f^{(n+2)}(t) d t$

$$
\left[\mathrm{v}(\mathrm{t})=\frac{-(x-t)^{n+1}}{n+1} ; \mathrm{du}(\mathrm{t})=f^{(n+2}(t) d t\right]
$$

$\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})=\frac{1}{n!}[0-0]-\int_{c}^{x} \frac{-(x-t)^{n+1}}{n+1} f^{(n+2)}(t) d t$
$\mathrm{E}_{\mathrm{n}+1}(\mathrm{x})=\frac{1}{(n+1)!} \int_{c}^{x}(x-t)^{n+1} f^{(n+2}(t) d t$
Therefore, the result is true for $\mathrm{n}+1$
Hence $\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$

Note:

The change of variable $t=x+(c-x) u$ transforms the integral
$\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$ to the form $\mathrm{E}_{\mathrm{n}}=\frac{(x-c)^{n+1}}{n!} \int_{c}^{x} u^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{x}+(\mathrm{c}-\mathrm{x}) \mathrm{u}) \mathrm{dt}$

$$
\text { For } \mathrm{t}=\mathrm{x}+(\mathrm{c}+\mathrm{x}) \mathrm{u} \quad \mathrm{u}=\frac{t-x}{c-x}
$$

$d t=0+(c-x) d u$
$\mathrm{du}=\frac{d t}{c-x}$
$\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$ becomes

t	c	x
u	1	0

$\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{1}^{0}(x-c)^{n} u^{n} \cdot \mathrm{f}^{(n+1)}(\mathrm{x}+(\mathrm{c}+\mathrm{x}) \mathrm{u})(\mathrm{c}-\mathrm{x}) \mathrm{dt}$
$\mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{1}^{0}-(x-c)^{n} u^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{x}+(\mathrm{c}+\mathrm{x}) \mathrm{u}) \mathrm{dt}$
$\mathrm{E}_{\mathrm{n}}=\frac{(x-c)^{n+1}}{n!} \int_{c}^{x} u^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{x}+(\mathrm{c}-\mathrm{x}) \mathrm{u}) \mathrm{dt}$

Theorem 4.41: [Bernstein Theorem]

Assume ' f ' and all its derivatives are non-negative on a compact interval [$b, b+r]$. Then if $b \leq x<$ $\mathrm{b}+\mathrm{r}$, the Taylor's series $\sum_{k=0}^{n} \frac{f^{(k)}(b)}{k!}(x-b)^{\mathrm{k}}$ converges to $\mathrm{f}(\mathrm{x})$.

Proof:

Assume ' s ' and all its derivatives are non-negative on a compact interval $[b, b+r]$.
To prove: If $\mathrm{b} \leq \mathrm{x}<\mathrm{b}+\mathrm{r}, \sum_{k=0}^{n} \frac{f^{(k)}(b)}{k!}(x-b)^{\mathrm{k}}$ converges to $\mathrm{f}(\mathrm{x})$.
By a translation, we can assume that $b=0$
$\therefore \mathrm{b} \leq \mathrm{x}<\mathrm{b}+\mathrm{r}$ becomes $0 \leq \mathrm{x}<\mathrm{r}$

The result is trivial for $\mathrm{x}=0$

Assume that $0<x<r$
We know that the Taylor's Formula with remainder
$\mathrm{f}(\mathrm{x})=\sum_{k=0}^{n} \frac{\left.f^{(k)}\right)}{k!}(0)(x)^{\mathrm{k}}+\mathrm{E}_{\mathrm{n}}(\mathrm{x})$
where $\quad \mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{0}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt}$
We will prove that the error term satisfied the inequality $0 \leq \mathrm{E}_{\mathrm{n}} \leq\left(\frac{x}{r}\right)^{n+1} . \mathrm{f} ®$
Put $\mathrm{t}=\mathrm{x}-\mathrm{xu}$ in (2), we get

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{0}^{x}(x-t)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{t}) \mathrm{dt} \\
& \mathrm{E}_{\mathrm{n}}=\frac{1}{n!} \int_{1}^{0}(x u)^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{x}-\mathrm{xu})(-\mathrm{xu} \\
& \mathrm{E}_{\mathrm{n}}=\frac{(x)^{n+1}}{n!} \int_{0}^{1} u^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{x}-\mathrm{xu}) \mathrm{du} \quad \forall \mathrm{x} \in[0, \mathrm{r}]
\end{aligned}
$$

t	o	x
u	1	0

If $\mathrm{x} \neq 0$, let $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\frac{E_{n}(x)}{x^{n+1}}$
$\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\frac{(x)^{n+1}}{n!} \int_{0}^{1} u^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{x}-\mathrm{xu}) \mathrm{du}$
Now, $f^{(n+1)}(x-x u)=f^{(n+1)} x(1-u)$

$$
\leq \mathrm{f}^{(\mathrm{n}+1)} \mathrm{r}(1-\mathrm{u}) \quad \text { if } 0 \leq \mathrm{u} \leq 1
$$

[Since $\mathrm{f}^{\mathrm{n+1}}$ is monotonic increasing on $[0, \mathrm{r}]$ \& its derivative non-negative]
$\therefore \frac{1}{n!} \int_{0}^{1} u^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{x}-\mathrm{xu}) \leq \frac{1}{n!} \int_{0}^{1} u^{n} \cdot \mathrm{f}^{(\mathrm{n}+1)}(\mathrm{r}-\mathrm{ru}) \mathrm{du}$
$\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \leq \mathrm{F}_{\mathrm{n}}(\mathrm{r}) \quad$ if $0<\mathrm{x} \leq \mathrm{r}$
(i.e.) $\frac{E_{n}(x)}{x^{n+1}} \leq \frac{E_{n}(r)}{x^{r+1}}$
(i.e.) $\mathrm{E}_{\mathrm{n}}(\mathrm{x}) \leq\left(\frac{x}{r}\right)^{n+1} E_{n}(r)$

Put $x=r$ in (1) we get
$\mathrm{f}(\mathrm{r})=\sum_{k=0}^{n} \frac{\left.f^{(k)}\right)(0)}{k!} r^{\mathrm{k}}+\mathrm{E}_{\mathrm{n}}(\mathrm{x})$
$\mathrm{f}(\mathrm{r}) \geq \mathrm{E}_{\mathrm{n}}(\mathrm{r})$
\therefore from equation (3) $\Rightarrow \mathrm{E}_{\mathrm{n}}(\mathrm{x}) \leq\left(\frac{x}{r}\right)^{n+1} f(r)$
Now, Clearly $\left(\frac{x}{r}\right)^{n+1}$ tends to 0 if $0<x<r$
$\left(\frac{x}{r}\right)^{n+1} . \mathrm{f}(\mathrm{r}) \rightarrow 0$ as $n \rightarrow \infty$ (by Comparison Test)
from equation (1) $\Rightarrow \mathrm{f}(\mathrm{x}) \lim _{n \rightarrow \infty} \frac{f^{(k)}(0)}{k!} x^{k}$
Hence the Taylor series $\sum_{k=0}^{n} \frac{f^{(k)}(b)}{k!}(x-b)^{\mathrm{k}}$ converges to $\mathrm{f}(\mathrm{x})$.

Unit V

Sequences of Functions - Pointwise convergence of sequences of functions -Examples of sequences of real - valued functions - Uniform convergence and continuity -Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Riemann Stieltjes integration - Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series Mean convergence.

Sequences of functions

Point wise Convergence of Sequences of Functions

Definition 5.1:

Let S be the set. The function f defined by the equation $\mathrm{f}(\mathrm{x})=\lim _{n \rightarrow \infty} f_{n}(x)$ if $\mathrm{x} \in \mathrm{S}$ is called the limit function of the sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$, and we say that $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges pointwise to ' f ' on the set 'S'.

Examples of Sequences of Real-Valued Functions

Example 5.2:

A sequence of continuous functions with a discontinuous limit function.
Let $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{x^{2 n}}{\left(1+x^{2 n}\right)}$ if $\mathrm{x} \in \mathrm{R}, \mathrm{n}=1,2, \ldots$.
Here $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for all $\mathrm{x} \in \mathrm{R}$,
The limit function $f(x)$ is given by $f(x)=\left\{\begin{array}{cc}0 & \text { if }|x|<1 \\ 1 / 2 & \text { if }|x|=1 \\ 1 & \text { if }|x|>1\end{array}\right.$
Each f_{n} is continuous on R , but f is discontinuous at $\mathrm{x}=1 \& \mathrm{x}=-1$.

Example 5.3:

A Sequence of functions for which $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{dx} \neq \int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) \mathrm{dx}$
Let $f_{n}(x)=n^{2} x(1-n)^{n}$ if $x \in R, n=1,2, \ldots$

If $0 \leq x \leq 1$, then the limit

$$
\begin{aligned}
& f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=0 \\
& \therefore \int_{0}^{1} f(x) d x=0 \text { (i.e.) } \int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x=0
\end{aligned}
$$

Now,

$$
\begin{aligned}
\int_{0}^{1} f_{n}(x) \mathrm{dx} & =\mathrm{n}^{2} \int_{0}^{1} \mathrm{x}(1-\mathrm{x})^{\mathrm{n}} \mathrm{dx} \quad[\mathrm{x}=1-\mathrm{t} \quad \Rightarrow \mathrm{t}=1-\mathrm{x} \quad \& \mathrm{dx}=-\mathrm{dt} \Rightarrow \\
& =\mathrm{n}^{2} \int_{1}^{0}(1-\mathrm{t}) \mathrm{t}^{\mathrm{n}}-\mathrm{dt} \\
& =\mathrm{n}^{2} \int_{0}^{1}(1-\mathrm{t}) \mathrm{t}^{\mathrm{n}} \mathrm{dt} \\
& =\mathrm{n}^{2} \int_{0}^{1} \mathrm{t}^{\mathrm{n}}-\mathrm{t}^{\mathrm{n}+1} \mathrm{dt} \\
& =\mathrm{n}^{2}\left[\frac{t^{n+1}}{n+1}-\frac{t^{n+2}}{n+2}\right]_{0}^{1} \\
& =\mathrm{n}^{2}\left[\frac{1}{n+1}-\frac{1}{n+2}\right] \\
& =\mathrm{n}^{2}\left[\frac{n+2-n-1}{(n+1)(n+2)}\right] \\
& =\frac{n^{2}}{(n+1)(n+2)}
\end{aligned}
$$

$$
\therefore \int_{0}^{1} f_{n}(x) \mathrm{dx}=\frac{n^{2}}{(n+1)(n+2)}
$$

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)(n+2)}=1
$$

(i.e.) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{dx}=1$

Hence $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{dx} \neq \int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) \mathrm{dx}$
In other words, the limit of the integral is not equal to the integral of the limit function
\therefore The operations of "limit" and integration" cannot always be interchanged.

Example 5.4:

A sequence of differentiable function $\left\{f_{n}\right\}$ with limit ' o ' for which $\left\{f_{n}{ }^{\prime}\right\}$ diverges.
Let $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{\sin n x}{\sqrt{n}}$ if $\mathrm{x} \in \mathrm{R}, \mathrm{n}=1,2, \ldots \ldots$
Then $\mathrm{f}(\mathrm{x})=\lim _{n \rightarrow \infty} f_{n}{ }^{\prime}(\mathrm{x})=\lim _{n \rightarrow \infty} \frac{\sin n x}{\sqrt{n}}=0$
Now, $f_{n}{ }^{\prime}(\mathrm{x})=\frac{1}{\sqrt{n}}(\cos \mathrm{nx}) . \mathrm{n}$

$$
=\sqrt{ } n(\cos n x)
$$

$\therefore f_{n}{ }^{\prime}(\mathrm{x})=\sqrt{ } \mathrm{n}(\cos \mathrm{nx})$
$\lim _{n \rightarrow \infty} f_{n}^{\prime}(\mathrm{x})=\lim _{n \rightarrow \infty} \sqrt{ }(\cos \mathrm{nx})=\infty$
$\therefore \lim _{n \rightarrow \infty} f_{n}^{\prime}$ (x$)$ does not exist for any ' x '.
(i.e.) $\left\{f_{n}{ }^{\prime}\right\} \rightarrow \infty$

Hence $\left\{f_{n}\right\} \rightarrow 0$ But $\left\{f_{n}{ }^{\prime}\right\} \rightarrow \infty$.

Definition of Uniform convergence

Definition 5.5:

A sequence of functions $\left\{f_{n}\right\}$ is said to converge pointwise to 'f' on a set 'S' if for all $\varepsilon>0$, for all $\mathrm{x} \in \mathrm{S}$, there exist N (depending on both $\mathrm{x} \& \varepsilon$) such that $\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon$

Definition 5.6:

A sequence of functions $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is said to converge uniformly to ' f ' on a set ' S ' if for all $\varepsilon>0$, there exist $\mathrm{N}($ depending only on ε) such that $\mathrm{n}>\mathrm{N}$
$\Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon, \forall \mathrm{x} \in \mathrm{S}$
We denote this symbolically by writing $f_{n} \rightarrow f$ uniformly on S .

Note:

When each term of the sequence $\left\{f_{n}\right\}$ is real-valued,

Then $\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon$ becomes

$$
-\varepsilon<\mathrm{f}_{\mathrm{n}}(\mathrm{x})<\mathrm{f}(\mathrm{x})+\varepsilon
$$

(i.e.)for all $\varepsilon>0$, there exist $\mathrm{N}($ depending only on ε) such that $\mathrm{n}>\mathrm{N}$
$\Rightarrow \mathrm{f}(\mathrm{x})-\varepsilon<\mathrm{f}_{\mathrm{n}}(\mathrm{x})<\mathrm{f}(\mathrm{x})+\varepsilon, \mathrm{V} \mathrm{x} \in \mathrm{S}$
(i.e.) The entire graph of $f_{n}=\left\{(x, y): y=f_{n}(x), x \in S\right\}$ lies within a band of height 2ε situated symmetrically about the graph of ' f '.

Definition 5.7:

A sequence $\left\{f_{n}\right\}$ is said to be uniformly bounded on S if there exists a constant $\mathrm{M}>0$. Such that $\mid f_{n}(x) \leq M \forall x \in S \& \forall n$. The number M is called a uniform bound for $\left\{f_{n}\right\}$.

Note (i):

Assume that $f_{n} \rightarrow f$ uniformly on S and that each f_{n} is bounded on S. Then $\left\{f_{n}\right\}$ is uniformly bounded on S

Given $f_{n} \rightarrow f$ uniformly on S
$\mathrm{V} \varepsilon>0$, there exist N such that $\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon$
$\Rightarrow\left|\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|-|\mathrm{f}(\mathrm{x})|\right|<\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon \quad \mathrm{V} \in \mathrm{S}$
$\Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|-|\mathrm{f}(\mathrm{x})|<| | \mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x}) \|<\varepsilon \quad \forall \mathrm{x} \in \mathrm{S}$
$\Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|-|\mathrm{f}(\mathrm{x})|<\varepsilon$
$\Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|-|\mathrm{f}(\mathrm{x})|<\varepsilon$
$|\mathrm{f}(\mathrm{x})|-\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|<\varepsilon$
Given, f_{n} is bounded on S
\Rightarrow there exist $\mathrm{M}_{1}>0$ such that $\mid \mathrm{f}_{\mathrm{n}}(\mathrm{x})<\mathrm{M}_{1} \forall \mathrm{x} \in \mathrm{S}$
Equation (2) $\Rightarrow|\mathrm{f}(\mathrm{x})|<\mathrm{M}_{1}+\varepsilon$

Equation (1) $\Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|<|\mathrm{f}(\mathrm{x})|+\varepsilon<\left(\mathrm{M}_{1}+\varepsilon\right)+\varepsilon=\mathrm{M}_{1}+2 \varepsilon=\mathrm{M}$ where $\mathrm{M}_{1}=\mathrm{M}_{1}+2 \varepsilon$
(i.e.) $|\mathrm{fn}(\mathrm{x})|<\mathrm{M} \forall \mathrm{x} \in \mathrm{S}$ V n
$\left\{f_{n}\right\}$ is uniformly bounded on S.

Note (ii):

If $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S \& each f_{n} is bounded, then $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ need not be uniformly converges

Note (iii):

If ' c ' is an accumulation point of S, then $\lim _{x \rightarrow c} \lim _{n \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} \lim _{x \rightarrow c} f_{n}(x)$

Uniform Convergence and Continuity

Theorem 5.8:

Assume that $\mathrm{f}_{\mathrm{n}} \rightarrow f$ uniformly on S . If each f_{n} is continuous at a point 'c' of S , then the limit function ' f ' is also continuous at c .

Proof:

Assume that $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on s
\Rightarrow for all $\varepsilon>0$, there exist N such that $\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon / 3$ for all $\mathrm{x} \in \mathrm{S}$
Case(i): ' c ' is an isolated point on 'S'
By the definition of isolation point, we get
There exist $\delta>0$ such that $(\mathrm{c}-\delta, \mathrm{c}+\delta) \cap \mathrm{S}=\{\mathrm{c}\}$
Let $\varepsilon>0$ be given

Let $\mid \mathrm{x}-\mathrm{cl}<\delta$
To prove that $|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})|<\varepsilon$
Now, $|\mathrm{x}-\mathrm{c}|<\delta$
$\Rightarrow-\delta<x-c<\delta$
$\Rightarrow c-\delta<x<c+\delta$
$\Rightarrow \mathrm{x} \in(\mathrm{c}-\delta, \mathrm{c}+\delta)$
Also $\mathrm{x} \in \mathrm{S}$
$\therefore \mathrm{x} \in(\mathrm{c}-\delta, \mathrm{c}+\delta) \cap \mathrm{S}=\{\mathrm{c}\}$
$\therefore \mathrm{x}=\mathrm{c}$
Now, $|f(x)-f(c)|=|f(c)-f(c)|=0<\varepsilon$.
\therefore ' f ' is continuous at ' c '.
Case (ii):
' c ' is an accumulation point on ' S '
Given: Each f_{n} is continuous at ' c '
$\therefore \mathrm{f}_{\mathrm{n}}$ is continuous at ' c '.

There exist a neighbourhood $B(c)$ such that $x \in B(c) \cap S$ implies

$$
\begin{equation*}
|\mathrm{x}-\mathrm{c}|<\delta \Rightarrow\left|\mathrm{f}_{\mathrm{N}}(\mathrm{x})-\mathrm{f}_{\mathrm{N}}(\mathrm{c})\right|<\varepsilon / 3 \tag{2}
\end{equation*}
$$

Now, $|f(x)-f(c)| \quad=\left|f(x)-f_{N}(x)+f_{N}(x)-f_{N}(c)+f_{N}(c)-f(c)\right|$

$$
\leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(c)\right|+\left|f_{N}(c)-f(c)\right|
$$

$$
\leq \varepsilon / 3+\varepsilon / 3+\varepsilon / 3
$$

$$
=\varepsilon \quad(\text { by equation }(1) \&(2))
$$

$\therefore|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})|<\varepsilon$ if $\mathrm{x} \in \mathrm{B}(\mathrm{c}) \cap \mathrm{S}$
$\therefore|\mathrm{x}-\mathrm{c}|<\delta \Rightarrow|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})|<\varepsilon$
$\therefore f$ is continuous at c .
Note: Uniform convergence of $\left\{f_{n}\right\}$ is sufficient but not necessary to transmit continuity from the individual terms to the limit function.

The Cauchy Condition for Uniform Convergence

Theorem 5.9:

Let $\left\{f_{n}\right\}$ be a sequence of functions defined on a set S. There exists a function ' f ' such that $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S if and only if the following condition (called the Cauchy Condition) is satisfied: For every $\varepsilon>0$ there exists an N such that $m>N \& n>N \Rightarrow\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon \forall x \in S$.

Proof:

Let $\left\{f_{n}\right\}$ be a sequence of functions defined on a set ' S '.
Suppose there exist ' f ' such that: $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S
\Rightarrow for all $\varepsilon>0$, there exist N such that $\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon / 2$ for all $\mathrm{x} \in \mathrm{S}$
Now, $\left|\mathrm{f}_{\mathrm{m}}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|=\left|\mathrm{f}_{\mathrm{m}}(\mathrm{x})-\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|$

$$
\begin{aligned}
& \leq\left|\mathrm{f}_{\mathrm{m}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|+\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|<\varepsilon \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Hence for all $\varepsilon>0$, there exist N such that
$\mathrm{m}>\mathrm{N} \& \mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{m}}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|<\varepsilon$ for all $\mathrm{x} \in \mathrm{S}$
Conversely,
Suppose the Cauchy Condition is satisfied
(i.e.)for every $\varepsilon>0$ there exist N such that
$\mathrm{m}>\mathrm{N} \& \mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{m}}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|<\varepsilon \forall \mathrm{x} \in \mathrm{S}$
To prove that, a function ' f ' such that $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S
From (1), we get
For each $x \in S$, the sequence $\left\{f_{n}(x)\right\}$ converges.
To prove: $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ if $x \in S$
Let $\varepsilon>0$ be given
Choose N so that
$n>N\left|f_{n}(x)-f_{n+k}(x)\right|<\varepsilon / 2 \forall K=1,2,3 \ldots \ldots \& \forall x \in S$
$\lim _{n \rightarrow \infty}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{n}+\mathrm{k}}(\mathrm{x})=\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right| \leq \varepsilon / 2<\varepsilon\right.$

Hence $\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon \forall \mathrm{x} \in \mathrm{S}$.
$\therefore \mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on s

Note:

- Pointwise and uniform convergence can be formulated in the more general setting of metric spaces. (i.e.) if $f_{n} \& f$ are functions from a non-empty set S to a metric space (T, d_{T}), we say that $f_{n} \rightarrow f$ uniformly on S, If for every $\varepsilon>0$, there exist N (depending only on ε) such that $\mathrm{n} \geq \mathrm{N} \Rightarrow \mathrm{d}_{\mathrm{T}}\left(\mathrm{f}_{\mathrm{n}}(\mathrm{x}), \mathrm{f}(\mathrm{x})\right)<\varepsilon$ for all $\mathrm{x} \in \mathrm{S}$
- Theorem $5.8 \& 5.9$ is valid if S is a metric space also.

Example 5.10:

Consider the metric space $(\mathrm{B}(\mathrm{S}), \mathrm{d})$ of all bounded real-valued functions on a non-empty set S , with metric $\mathrm{d}(\mathrm{f}, \mathrm{g})=\| \mathrm{f}$-g\| where $\|\mathrm{f}\|=\operatorname{SUP}_{x \in S}|f(x)|$.

Then $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ in $(\mathrm{B}(\mathrm{S}), \mathrm{d}) \Leftrightarrow \mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S .
(i.e.) ordinary convergence in a metric space $(B(S), d) \Leftrightarrow$ Uniform convergence on S

Proof:

Suppose $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ in $(\mathrm{B}(\mathrm{S}), \mathrm{d})$
$\Rightarrow \forall \varepsilon>0, \forall x \in S$, there exist N (depending on both $x \& \varepsilon$) such that
$\mathrm{n}>\mathrm{N} \Rightarrow\left\|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right\|<\varepsilon$
(i.e.) $\mathrm{n}>\mathrm{N} \Rightarrow \sup _{x \in S}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon$
$\Rightarrow \mathrm{V} \subset>0$, there exist N (depending only on ε) such that
$\mathrm{n}>\mathrm{N} \Rightarrow \sup _{x \in S}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon \forall \mathrm{x} \in \mathrm{S}$
We know that $\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right| \leq \sup _{x \in S}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|$ (by 1$)$

$$
<\varepsilon
$$

$\therefore \mathrm{V} \varepsilon>0$, there exist N (depending only on ε) such that
$\mathrm{n}>\mathrm{N} \Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon \quad \forall \mathrm{x} \in \mathrm{S}$
Hence $f_{n} \rightarrow f$ uniformly on S.

Similarly, we can prove the converse part also.

Uniform Convergence of Infinite Series of Functions

Definition 5.11:

Given a sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ of functions defined on a set S .
For each x in S , let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n} f_{k}(x)(\mathrm{n}=1,2, \ldots \ldots)$
If there exists a function f such that in $\mathrm{S}_{\mathrm{n}} \rightarrow f$ uniformly on S , we say the series $\sum f_{\mathrm{n}}(\mathrm{x})$ converges uniformly on S , and write $\sum_{n=1}^{\infty} f_{n}=f$ (x) (uniformly on s)

Theorem 5.12:

[Cauchy Condition for Uniform Convergence of Series]

The infinite series $\sum f_{n}(x)$ converges uniformly on S, if and only if for every $\varepsilon>0$ there is an N such that $\mathrm{n}>\mathrm{N} \Rightarrow\left|\sum_{\mathrm{k}=\mathrm{n}+1}^{\mathrm{n}+\mathrm{p}} \mathrm{f}_{\mathrm{k}}(\mathrm{x})<\varepsilon\right|$, for each $\mathrm{p}=1,2, \ldots$ and every x in S .

Proof:

Let $\left\{f_{n}\right\}$ be a sequence of functions defined on S.
Let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{k}}(\mathrm{x}) \quad(\mathrm{n}=1,2, \ldots) \forall \mathrm{x} \in \mathrm{S}$
Given, $\sum f_{n}(x)$ converges uniformly on s
\Rightarrow there exist a function f such that $\mathrm{S}_{\mathrm{n}} \rightarrow f$ uniformly on S
By the Cauchy Condition for Uniform Convergence of the sequence
Theorem 5.9, we get $V \varepsilon>0$, there exist N such that $\mathrm{n}>\mathrm{N}$
$\Rightarrow\left|S_{n+p}(x)-S_{n}(x)\right|<\varepsilon, p=1,2,3, \ldots \ldots . \& \forall x \in S$
$\Rightarrow\left|\sum_{k=1}^{n+p} f_{k}(x)-\sum_{k=1}^{n} f_{k}(x)\right|<\varepsilon, p=1,2,3, \ldots \ldots . \& \forall x \in S$
$\therefore \mathrm{n}>\mathrm{N} \Rightarrow\left|\sum_{\mathrm{k}=1}^{\mathrm{n}+\mathrm{p}} \mathrm{f}_{\mathrm{k}}(\mathrm{x})\right|<\varepsilon, \mathrm{p}=1,2,3, \ldots \ldots . \& \forall \mathrm{x} \in \mathrm{S}$
Conversely,
Assume that $\mathrm{V} \varepsilon>0$ there exist N such that
$n>N \Rightarrow\left|\sum_{k=1}^{n+p} f_{k}(x)\right|<\varepsilon, p=1,2,3, \ldots \ldots . . \&$
$\& V x \in S$
$\Rightarrow\left|\sum_{\mathrm{k}=1}^{\mathrm{n}+\mathrm{p}} \mathrm{f}_{\mathrm{k}}(\mathrm{x})-\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{k}}(\mathrm{x})\right|<\varepsilon$,
$\Rightarrow\left|S_{n+p}(x)-S_{n}(x)\right|<\varepsilon, p=1,2,3, \ldots \ldots . \& \forall x \in S$
Again by Cauchy condition for Uniform Convergence (Theorem 5.9), we get
$\mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S
$\Rightarrow \Sigma f_{n}(x)$ converges uniformly on S

Theorem 5.13 [Weierstrass M-test]

Let $\left\{M_{n}\right\}$ be a sequence of non-negative numbers Such that $0 \leq\left|f_{n}(x)\right| \leq M_{n}$ for $n=1,2, \& \forall x \in S$. Then $\Sigma f_{n}(x)$ converges uniformly on S if M_{n} converges.

Proof:

Let $\left\{f_{n}\right\}$ be a sequence of functions defined on S
Let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{k}}(\mathrm{x})(\mathrm{n}=1,2, \ldots.) \forall \mathrm{x} \in \mathrm{S}$
Let $\left\{M_{n}\right\}$ be a sequence of non-negative numbers such that
$\left.0 \leq \mid f_{n}(x)\right] \leq M_{n}$ for $n=1,2, \ldots \& \forall x \in S$
Given: $\sum \mathrm{M}_{\mathrm{n}}$ converges
To prove: $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x})$ converges uniformly on S
(i.e.) To prove that there exist a function $f, \mathrm{~S}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S
$\therefore \sum \mathrm{M}_{\mathrm{n}}$ converges \& by Cauchy Condition for Series
$\forall \varepsilon>0$ there exist N such that $n>N \Rightarrow M_{n+1}+M_{n+2}+$ \qquad $.+\mathrm{M}_{\mathrm{n}+\mathrm{p}} \mid<\varepsilon$ for $\mathrm{p}=1,2, \ldots$.
$\Rightarrow\left|\sum_{\mathrm{k}=1}^{\mathrm{n}+\mathrm{p}} \mathrm{M}_{\mathrm{k}}(\mathrm{x})\right|<\varepsilon$ for $\mathrm{p}=1,2$,
Now, Given: $0 \leq\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right| \leq \mathrm{M}_{\mathrm{n}}$
$\Rightarrow\left|\sum_{\mathrm{k}=1}^{\mathrm{n}+\mathrm{p}} \mathrm{f}_{\mathrm{k}}(\mathrm{x})\right| \leq\left|\sum_{\mathrm{k}=1}^{\mathrm{n}+\mathrm{p}} \mathrm{M}_{\mathrm{k}}\right|$

$$
<\varepsilon \quad(b y(1))
$$

$\therefore\left|\sum_{\mathrm{k}=1}^{\mathrm{n}+\mathrm{p}} \mathrm{f}_{\mathrm{k}}(\mathrm{x})\right|<\varepsilon$ ，for $\mathrm{p}=1,2, \ldots \ldots \& \forall \mathrm{x} \in \mathrm{S}$
By Cauchy Condition for Uniform Convergence of series（Theorem 5．12），we get $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x})$ converges uniformly on s

Theorem 5．14：

Assume that $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{f}(\mathrm{x})$（uniformly on s ）．If each f_{n} is continuous at a point x_{0} of S ，then f is also continuous at x_{0} ．

Proof：

Let $\left\{f_{n}\right\}$ be a sequence of functions defined on S
Let $S_{n}(x)=\sum_{k=1}^{n} f_{k}(x)(n=1,2, \ldots) \& V x \in S$
Given： $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{f}(\mathrm{x})$（uniformly on s ）$\Rightarrow \mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on S
$\Rightarrow \mathrm{V} \quad \varepsilon>0$ ，there exist N such that $\mathrm{n}>\mathrm{N}=\left|\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|<\varepsilon / 3$
Given：Each f_{n} is continuous at x_{0}
$\Rightarrow \mathrm{S}_{\mathrm{n}}$ is continuous at x_{0}
$\therefore \mathrm{S}_{\mathrm{N}}$ is continuous at x_{0}
\Rightarrow there exist a neighbourhood $\mathrm{B}\left(\mathrm{x}_{0}\right)$
$\mathrm{x} \in \mathrm{B}\left(\mathrm{x}_{0}\right) \cap \mathrm{S} \Rightarrow\left|\mathrm{S}_{\mathrm{N}}(\mathrm{x})-\mathrm{S}_{\mathrm{N}}\left(\mathrm{x}_{0}\right)\right|<\varepsilon / 3$

If $\mathrm{x} \in \mathrm{B}\left(\mathrm{x}_{0}\right) \cap \mathrm{S}$ ，then $\left|\mathrm{f}(\mathrm{x})-\mathrm{f}\left(\mathrm{x}_{0}\right)\right|=\left|\mathrm{f}(\mathrm{x})-\mathrm{S}_{\mathrm{N}}(\mathrm{x})+\mathrm{S}_{\mathrm{N}}(\mathrm{x})-\mathrm{S}_{\mathrm{N}}\left(\mathrm{x}_{0}\right)+\mathrm{S}_{\mathrm{N}}\left(\mathrm{x}_{0}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)\right|$

$$
\begin{aligned}
& \leq\left|\mathrm{f}(\mathrm{x})-\mathrm{S}_{\mathrm{N}}(\mathrm{x})\right|+\left|\mathrm{S}_{\mathrm{N}}(\mathrm{x})-\mathrm{S}_{\mathrm{N}}\left(\mathrm{x}_{0}\right)\right|+\left|\mathrm{S}_{\mathrm{N}}\left(\mathrm{x}_{0}\right)-\mathrm{f}\left(\mathrm{x}_{0}\right)\right| \\
& <\varepsilon / 3+\varepsilon / 3+\varepsilon / 3 \quad \text { (by equation }(1)+(2)) \\
& <\varepsilon
\end{aligned}
$$

（i．e．）$\left|f(x)=f\left(x_{0}\right)\right|<\varepsilon$
Hence f is continuous at \mathbf{x}_{0}

Non-Uniformly Convergent Sequences that can be Integrated Term by Term:

Example 5.15:

Let $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}$ if $\mathrm{o} \leq \mathrm{x} \leq 1$
Then $\lim _{n \rightarrow \infty} \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\left\{\begin{array}{cc}0 & \text { if } o<x<1 \\ 1 & \text { if } x=1\end{array}\right.$
$\therefore \mathrm{f}_{\mathrm{n}}(\mathrm{x})$ is a sequence of continuous functions with discontinuous limit
\Rightarrow The convergence of $f_{\mathrm{n}}(\mathrm{x})$ is not uniform on $[0,1]$

Now,
$\int_{0}^{1} f_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=\int_{0}^{1} x^{\mathrm{n}} \mathrm{dx}=\frac{x^{n+1}}{n+1}=\frac{1}{n+1}$
$\Rightarrow \lim _{n \rightarrow \infty} \int_{0}^{1} f_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$
\therefore The sequence $f_{\mathrm{n}}(\mathrm{x})$ is not uniformly convergent on $[0,1]$ But this sequence $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ is uniformly convergent on every closed sub interval of $[0,1]$ not containing 1.

Definition 5.16:

A sequence of functions $\{\mathrm{fn}\}$ is said to be boundedly convergent on T if $\left\{f_{\mathrm{n}}\right\}$ is pointwise convergent and uniformly bounded on T

Theorem 5.17:

Let $\left\{f_{n}\right\}$ be a boundedly convergent sequence on $[a, b]$. Assume that each $f_{\mathrm{n}} \in R$ on $[a, b]$, and that the limit function $f \in R$ on $[a, b]$. Assume also that there is a partition P of $[a, b]$, say $P=$ $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{m}}\right\}$, Such that, on every sub interval $[\mathrm{c}, \mathrm{d}]$ not containing any of the points x_{k}, the sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges uniformly to f . Then we have $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}$ $=\int_{a}^{b} f(t) d t$

Proof:

Let $\left\{f_{\mathrm{n}}\right\}$ be a boundedly convergent sequence on $[\mathrm{a}, \mathrm{b}]$
$\Rightarrow\left\{f_{\mathrm{n}}\right\}$ is point wise convergent and uniformly bounded on $[\mathrm{a}, \mathrm{b}]$.

Assume each $f_{\mathrm{n}} \in \mathrm{R}$ on $[\mathrm{a}, \mathrm{b}]$ and $f \in \mathrm{R}$ on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{p}=\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . \mathrm{x}_{\mathrm{m}}\right\} \in \mathcal{P}[\mathrm{a}, \mathrm{b}]$ such that every subinterval $[\mathrm{c}, \mathrm{d}]$ not containing any of the points x_{k}, the sequence $\left\{f_{n}\right\}$ converges uniformly to ' f '.

To prove that $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}=\int_{a}^{b} f(t) d t$
$\because f$ is bounded and $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is uniformly bounded on $[\mathrm{a}, \mathrm{b}]$
There exist M such that $|\mathrm{f}(\mathrm{x})| \leq \mathrm{M} \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}] \&\left|f_{\mathrm{n}}(\mathrm{x})\right| \leq \mathrm{M} \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
and $\mathrm{Vn} \geq 1$
given $\varepsilon>0$ such that $2 \varepsilon \leq \|$ p\|
Let $\mathrm{h}=\varepsilon / 2 \mathrm{M}$, where $\mathrm{m}=$ Number of sub intervals of P

Consider a new partition p of $[\mathrm{a}, \mathrm{b}]$ given by
$\mathrm{p}=\left\{\mathrm{x}_{0}, \mathrm{x}_{0+\mathrm{h}}, \mathrm{x}_{1-\mathrm{h}} \mathrm{x}_{1+\mathrm{h}} \ldots . . \mathrm{x}_{\mathrm{m}-1}-\mathrm{h}, \mathrm{x}_{\mathrm{m}-1}, \mathrm{x}_{\mathrm{m}-1}+\mathrm{h}, \mathrm{x}_{\mathrm{m}}-\mathrm{h}, \mathrm{x}_{\mathrm{m}}\right\}$
Now, $\left|\mathrm{f}-\mathrm{f}_{\mathrm{n}} \mathrm{l}=\left|\mathrm{f}+\left(-\mathrm{f}_{\mathrm{n}}\right)\right| \leq|\mathrm{f}|+\left|-\mathrm{f}_{\mathrm{n}} \mathrm{l}=|\mathrm{f}|+\right| \mathrm{f}_{\mathrm{n}} \mathrm{l} \leq \mathrm{M}+\mathrm{M}\right.$ (by 1)
$\mid f-\mathrm{f}_{\mathrm{n}} \mathrm{l} \leq 2 \mathrm{M}$
Now, $f \in R \& f_{n} \in R$ on $[a, b]$
$\mid f-\mathrm{f}_{\mathrm{n}} \mathrm{l} \in \mathrm{R}$ on $[\mathrm{a}, \mathrm{b}]$
\therefore The sum of the integrals of $\mid \mathrm{f}-\mathrm{f}_{\mathrm{n}} 1$ taken over the intervals
$\left[\mathrm{x}_{0}, \mathrm{x}_{0+\mathrm{h}}\right],\left[\mathrm{x}_{1-\mathrm{h}}, \mathrm{X}_{1+\mathrm{h}}\right], \ldots . .\left[\mathrm{x}_{\mathrm{m}-1}-\mathrm{h}, \mathrm{x}_{\mathrm{m}-1}+\mathrm{h}\right],\left[\mathrm{x}_{\mathrm{m}}-\mathrm{h}, \mathrm{x}_{\mathrm{m}}\right]$ is

$$
\begin{array}{r}
\int_{x_{0}}^{x_{0}+h}\left|f-f_{n}\right| d x+\int_{x_{1}}^{x_{1}+h}\left|f-f_{n}\right| d x+\ldots \ldots .+\int_{x_{m-1}}^{x_{m-1}+h}\left|f-f_{n}\right| d x \\
+\int_{x_{m-h}}^{x_{m}}\left|f-f_{n}\right| d x
\end{array}
$$

$\leq 2 \mathrm{M}\left\{\left[\mathrm{x}_{0}, \mathrm{x}_{0+\mathrm{h}}\right],\left[\mathrm{x}_{1-\mathrm{h}}, \mathrm{x}_{1+\mathrm{h}}\right] \ldots .\left[\mathrm{x}_{\mathrm{m}-1}-\mathrm{h}, \mathrm{x}_{\mathrm{m}-1}+\mathrm{h}\right],\left[\mathrm{x}_{\mathrm{m}}-\mathrm{h}, \mathrm{x}_{\mathrm{m}}\right]\right\}$
$=2 \mathrm{M}\{\mathrm{h}+2 \mathrm{~h}+2 \mathrm{~h}+\ldots \ldots .2 \mathrm{~h}+\mathrm{h}\}$
$=2 \mathrm{M}[2 \mathrm{~h}+2 \mathrm{~h}+\ldots \ldots+2 \mathrm{~h}]$ (m times)
$=2 \mathrm{M}(2 \mathrm{~h}) . \mathrm{m}$
$=2 \mathrm{M}(2 \mathrm{~m}) \varepsilon / 2 \mathrm{~m}$
$=2 \mathrm{M} \varepsilon$
(i.e.) $\int_{x_{0}}^{x_{0}+h}\left|f-f_{n}\right| d x+\int_{x_{1-h}}^{x_{1}+h}\left|f-f_{n}\right| d x+\ldots \ldots+\int_{x_{m-h}}^{x_{m}}\left|f-f_{n}\right| d x \leq 2 \mathrm{M} \varepsilon$

The remaining portion of $[a, b]$ (say S) is the union of finite number of closed intervals, in each of which $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is uniformly converges to ' f '.
(i.e.), $f_{n} \rightarrow f$ uniformly on S
\Rightarrow there exist an integer N such that $\mathrm{n} \geq \mathrm{N} \Rightarrow\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|<\varepsilon \forall \mathrm{x} \in \mathrm{S}$
The sum of the integrals of $\left|f-f_{n}\right|$ over the intervals of S is

$$
\begin{aligned}
& \int_{x_{0}+h}^{x_{1}+h}\left|f-f_{n}\right| d x+\int_{x_{1-h}}^{x_{2}+h}\left|f-f_{n}\right| d x+\ldots \ldots+\int_{x_{m-2}}^{x_{m-1}-h}\left|f-f_{n}\right| d x \\
& \quad+\int_{x_{m-1}+h}^{x_{m}-h}\left|f-f_{n}\right| d x \\
& <\varepsilon\left\{\left[\mathrm{x}_{1}-\mathrm{h}-\mathrm{x}_{0}-\mathrm{h}\right]+\left[\mathrm{x}_{2}-\mathrm{h}-\mathrm{x}_{1}-\mathrm{h}\right]+\ldots . .+\left[\mathrm{x}_{\mathrm{m}-1}-\mathrm{h}-\mathrm{x}_{\mathrm{m}-2}-\mathrm{h}\right]+\left[\mathrm{x}_{\mathrm{m}}-\mathrm{h}-\mathrm{x}_{\mathrm{m}-1}-\mathrm{h}\right]\right\} \\
& =\varepsilon\left\{\left(-\mathrm{x}_{0}-2 \mathrm{~h}\right)+(-2 \mathrm{~h})+\ldots \ldots+(-2 \mathrm{~h})+\left(\mathrm{x}_{\mathrm{m}}-2 \mathrm{~h}\right)\right\} \\
& =\varepsilon\left\{\mathrm{x}_{\mathrm{m}}-\mathrm{x}_{0}-(2 \mathrm{~h}+2 \mathrm{~h}+\ldots . .2 \mathrm{~h}) \quad(\mathrm{m} \text { times })\right\} \\
& =\varepsilon\{\mathrm{b}-\mathrm{a}-2 \mathrm{~h}(\mathrm{~m})\} \\
& =\varepsilon\{\mathrm{b}-\mathrm{a}-2 \mathrm{~m} . \varepsilon / 2 \mathrm{~m}\} \\
& =\varepsilon[(\mathrm{b}-\mathrm{a})-\varepsilon\} \\
& =\varepsilon(\mathrm{b}-\mathrm{a})-\varepsilon^{2}
\end{aligned}
$$

$\leq \varepsilon(\mathrm{b}-\mathrm{a})$
(i.e.) $\int_{x_{0}+h}^{x_{1}+h}\left|f-f_{n}\right| d x+\int_{x_{1-h}}^{x_{2}+h}\left|f-f_{n}\right| d x+\ldots \ldots+\int_{x_{m-1}+h}^{x_{m}-h}\left|f-f_{n}\right| d x \leq \varepsilon(\mathrm{b}-\mathrm{a})$

From (3) and (4) we get,
$\int_{a}^{b}\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right| \mathrm{dx} \leq 2 \mathrm{M} \varepsilon+\varepsilon(\mathrm{b}-\mathrm{a})$

$$
=\varepsilon(2 \mathrm{M}+(\mathrm{b}-\mathrm{a}))
$$

(i.e.) $\int_{a}^{b}\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right| \mathrm{dx} \leq=\varepsilon(2 \mathrm{M}+(\mathrm{b}-\mathrm{a}))$ where ever $\mathrm{n} \geq \mathrm{N}$
$\therefore \int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx} \Rightarrow \int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}$ as $\mathrm{n} \rightarrow \infty$
(i.e.) $\lim _{n \rightarrow \infty} \int_{a}^{b} \mathrm{f}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx} \Rightarrow \int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{a}^{b} \lim _{n \rightarrow \infty} \mathrm{f}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}$

Theorem 5.18:(Arzela)

Assume that $\left\{f_{n}\right\}$ is boundedly convergent on $[a, b]$ and suppose each f_{n} is Riemann-integrable on [a, b]. Assume also that the limit function ' f ' is Riemann-integrable on [a, b]. Then $\lim _{n \rightarrow \infty}$ $\int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{a}^{b} f(x) d x$

Example 5.19:

A boundedly convergent sequence $\left\{f_{n}\right\}$ of Riemann- Integrable functions whose limit is not Riemann- Integrable.
(i.e.), $\lim _{n \rightarrow \infty} \int_{a}^{b} \mathrm{f}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx} \neq \int_{a}^{b} \lim _{n \rightarrow \infty} \mathrm{f}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=\int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx}$

Let $\left\{r_{1}, r_{2} \ldots \ldots\right\}$ be the set of rational numbers in $[0,1]$
Define $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\left\{\begin{array}{cc}1 & \text { if } x=r_{k} \\ 0 & \text { otherwise }\end{array}, \forall \mathrm{k}=1,2, \ldots \ldots \mathrm{n}\right.$
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}1 \text { if } x \text { is rational } \\ 0 \text { if } x \text { is irrational }\end{array}\right.$
Clearly, $\therefore \int_{0}^{1} f_{n}(x) d x=0 \mathrm{Vn}$

Here ' f_{n} ' converges point wise to f
\therefore Each f_{n} has only finitely many points of discontinuity
\therefore Each f_{n} is Riemann- Integrable.
But $\mathrm{U}(\mathrm{P}, \mathrm{f})=\sum \mathrm{M}_{\mathrm{k}}(\mathrm{f}) \Delta \mathrm{x}_{\mathrm{k}}$

$$
\begin{aligned}
& =\sum \sup \left(\mathrm{f}(\mathrm{x}) \cdot \Delta \mathrm{x}_{\mathrm{k}}\right. \\
& =\sum 1 \cdot \Delta \mathrm{x}_{\mathrm{k}}
\end{aligned}
$$

$$
=\mathrm{b}-\mathrm{a}
$$

$$
=1-0=1
$$

$\therefore \mathrm{U}(\mathrm{P}, \mathrm{f})=1 \Rightarrow \int_{a}^{-b} f(x) \mathrm{dx}$
Similarly, $L(P, f)=\sum M_{k}(f) \Delta x_{k}$
$=\sum \inf \left(f(x) . \Delta x_{k}\right.$
$=\sum 0 . \Delta \mathrm{x}_{\mathrm{k}}$
$=0$
$\Rightarrow \int_{-a}^{b} f(x) \mathrm{dx}$
$\therefore \int_{-a}^{b} f(x) \mathrm{dx} \neq \int_{-a}^{b} f(x) \mathrm{dx}$.
\therefore The limit function f is not Riemann- Integrable.

Uniform Convergence and Differentiation

Note

- $\left\{f_{n}\right\}$ converges uniformly on R. Then $\left\{f_{n}{ }^{\prime}\right\}$ need not converge (even pointwise) on R
- If $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on $[\mathrm{a}, \mathrm{b}]$ \& if f_{n} exists for each n then f^{\prime} exists \& $f^{\prime}{ }_{\mathrm{n}} \rightarrow f^{\prime}$ uniformly on [ab] need not be true.

Theorem 5.20:

Assume that each term of $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is a real-valued. function having a finite derivative at each point of an open interval (a, b) Assume that for at least one point x_{0} in (a, b) the sequence $\left\{\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)\right.$ \} converges. Assume further that there exists a function g such that $f^{\prime}{ }_{n} \rightarrow$ g uniformly on (a,b). Then
a) There exists a function f such that $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on (a, b).
b) For each x in (a, b) the derivative $f^{\prime}(x)$ exists and equals $g(x)$.

Proof:

Assume that each term of $\left\{f_{n}\right\}$ is a real-valued function having a finite derivative at each point of (a, b)

Given: Atleast one point $\mathrm{x}_{0} \in(\mathrm{a}, \mathrm{b}),\left\{\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)\right\}$ converges.

Given: the exist ' g ' such that : $f^{\prime} \rightarrow \mathrm{g}$ uniformly on (a, b)
(a) there exist as $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on (a, b)

Assume that $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$
Define a new sequence $\left\{g_{n}\right\}$ as follows.
$g_{n}(x)=\left\{\begin{array}{c}\frac{f_{n}(x)-f_{n}(c)}{x-c} \text { if } x \neq c \\ f_{n}{ }^{\prime} \quad \text { if } x=c\end{array}\right.$.
The sequence $\left\{g_{n}\right\}$ so formed depends on the choice of ' c '
(3) $\Rightarrow g_{n}(\mathrm{c})-\mathrm{f}_{\mathrm{n}}{ }^{\prime}(\mathrm{c})$
(2) $\Rightarrow\left\{f_{n}^{\prime}(\mathrm{c})\right\}$ converges
(i.e.) $\left\{g_{n}(\mathrm{c})\right\}$ converges

Claim: $\left\{g_{n}\right\}$ converges uniformly on (a, b)
If $\mathrm{x} \neq \mathrm{c}$, then, $g_{n}(\mathrm{x})-\mathrm{g}_{\mathrm{m}}(\mathrm{x})=\frac{f_{n}(x)-f_{n}(c)}{x-c}-\frac{f_{m}(x)-f_{m}(c)}{x-c}$
$\Rightarrow g_{n}(\mathrm{x})-\mathrm{g}_{\mathrm{m}}(\mathrm{x})=\frac{\left[f_{n}(x)-f_{m}(c)\right]-\left[f_{n}(x)-f_{m}(c)\right]}{x-c}$
Let $\mathrm{h}(\mathrm{x})=\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{m}}(\mathrm{x})$
$\therefore g_{n}(\mathrm{x})-\mathrm{g}_{\mathrm{m}}(\mathrm{x})=\frac{h(x)-h(c)}{x-c}$
Now, $\mathrm{h}(\mathrm{x})=f_{n}(\mathrm{x})-f_{m}(\mathrm{x})$
$\Rightarrow \mathrm{h}^{\prime}(\mathrm{x})=f^{\prime}{ }_{\mathrm{n}}(\mathrm{x})-f^{\prime}{ }_{\mathrm{m}}(\mathrm{x}) \& \mathrm{~h}^{\prime}(\mathrm{x})$ exists $\mathrm{V} \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
By Mean-Value Theorem,
There exist a point $\mathrm{x}_{1} \in(\mathrm{x}, \mathrm{c})$
such that $\mathrm{h}(\mathrm{x})-\mathrm{h}(\mathrm{c})=\mathrm{h}^{\prime}\left(\mathrm{x}_{1}\right)(\mathrm{x}-\mathrm{c})$
$\Rightarrow \mathrm{h}^{\prime}\left(\mathrm{x}_{1}\right)=\frac{h(x)-h(c)}{x-c}$
$f^{\prime}{ }_{\mathrm{n}}(\mathrm{x})-f^{\prime}{ }_{\mathrm{m}}(\mathrm{x})=g_{n}(\mathrm{x})-\mathrm{g}_{\mathrm{m}}(\mathrm{x}) \quad \ldots \ldots . .(6)$ (by (4) and (5))
Given $f^{\prime}{ }_{n} \rightarrow$ g uniformly on (a, b)
\Rightarrow given $\varepsilon>0$, there exist N such that $\forall \mathrm{n}>\mathrm{N} \Rightarrow\left|f^{\prime}{ }_{\mathrm{n}}(\mathrm{x})-\mathrm{g}(\mathrm{x})\right|<\varepsilon / 2 \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$

Let $\mathrm{n}, \mathrm{m}>\mathrm{N}$.

Then $\left|g_{n}(\mathrm{x})-\mathrm{g}_{\mathrm{m}}(\mathrm{x})\right|=\left|f^{\prime}{ }_{\mathrm{n}}\left(\mathrm{x}_{1}\right)-f^{\prime}{ }_{\mathrm{m}}\left(\mathrm{x}_{1}\right)\right| \quad$ (by equation (1))

$$
\begin{aligned}
& =\left|f^{\prime}{ }_{\mathrm{n}}\left(\mathrm{x}_{1}\right)-\mathrm{g}\left(\mathrm{x}_{1}\right)+\mathrm{g}\left(\mathrm{x}_{1}\right)-f_{\mathrm{m}}^{\prime}\left(\mathrm{x}_{1}\right)\right| \\
& \leq\left|f^{\prime}{ }_{\mathrm{n}}\left(\mathrm{x}_{1}\right)-\mathrm{g}\left(\mathrm{x}_{1}\right)\right|+\left|f^{\prime}{ }_{\mathrm{m}}\left(\mathrm{x}_{1}\right)-\mathrm{g}\left(\mathrm{x}_{1}\right)\right| \\
& <\varepsilon / 2+\varepsilon / 2 \\
& =\varepsilon
\end{aligned}
$$

(i.e.) $\left|g_{n}(x)-g_{m}(x)\right|<\varepsilon$
$\therefore\left\{g_{n}\right\}$ converges uniformly on (a, b)
Now, to prove: $\left\{f_{n}\right\}$ converges uniformly on (a, b)

Let us form the particular sequence $\left\{g_{n}\right\}$ corresponding to the special point $\mathrm{c}=\mathrm{x}_{0}$ for which $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}$ is assumed to converge.
(3) $\Rightarrow g_{n}(\mathrm{x})=\frac{f_{n}(x)-f_{n}\left(x_{0}\right)}{x-x_{0}}$
$\Rightarrow \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)+\left(\mathrm{x}-\mathrm{x}_{0}\right) g_{n}(\mathrm{x}) \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b})$
$\therefore \mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{m}}(\mathrm{x})=\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)+\left(\mathrm{x}-\mathrm{x}_{0}\right) g_{n}(\mathrm{x})-\mathrm{f}_{\mathrm{m}}(\mathrm{x} 0)-\left(\mathrm{x}-\mathrm{x}_{0}\right) \mathrm{g}_{\mathrm{m}}(\mathrm{x})$
$\Rightarrow \mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{m}}(\mathrm{x})=\left[\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)-\mathrm{f}_{\mathrm{m}}\left(\mathrm{x}_{0}\right)\right]+\left(\mathrm{x}-\mathrm{x}_{0}\right)\left[g_{n}(\mathrm{x})-\mathrm{g}_{\mathrm{m}}(\mathrm{x})\right]$
Now, $\left\{g_{n}\right\}$ converges uniformly on $(\mathrm{a}, \mathrm{b}) \&\left\{\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}\right\}\right.$ converges
\Rightarrow given $\varepsilon>0$, choose N such that for $\mathrm{n}, \mathrm{m}>\mathrm{N}$
$\left|g_{n}(\mathrm{x})-\mathrm{g}_{\mathrm{m}}(\mathrm{x})\right|<\varepsilon / 2\left|\mathrm{x}-\mathrm{x}_{0}\right| \&\left|\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)-\mathrm{f}_{\mathrm{m}}\left(\mathrm{x}_{0}\right)\right|<\varepsilon / 2$
\therefore equation $(7) \Rightarrow\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{m}}(\mathrm{x})\right|<\varepsilon / 2+\left|\mathrm{x}-\mathrm{x}_{0}\right| . \varepsilon / 2\left|\mathrm{x}-\mathrm{x}_{0}\right|$

$$
=\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

$\therefore\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges uniformly on (a, b)
b) Let 'c' be an arbitrary point in (a, b)

Let $\mathrm{G}(\mathrm{x})=\lim _{n \rightarrow \infty} \mathrm{Gn}(\mathrm{x})$

Given $f^{\prime}{ }_{n}$ exists

Equation (3) $\Rightarrow \lim _{x \rightarrow c} g_{n}(\mathrm{x})=g_{n}(\mathrm{c})$
(i.e.), Each g_{n} is continuous at c

We have $\left\{g_{n}\right\}$ converges uniformly on (a, b)
$g_{n} \rightarrow \mathrm{~g}$ converges uniformly on (a, b)
$\therefore \mathrm{G}$ is also continuous at ' c '
(i.e.), $\lim _{x \rightarrow c} G(x)=G(c)$.

For $\mathrm{x} \neq \mathrm{c}$, we have,
(i.e.), $\lim _{n \rightarrow \infty} g_{n}(\mathrm{x})=\lim _{n \rightarrow \infty} \frac{f_{n}(x)-f_{n}(c)}{x-c}=\frac{f(x)-f(c)}{x-c}$
$\therefore \lim _{x \rightarrow c} \mathrm{G}(\mathrm{x})=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$
$\mathrm{G}(\mathrm{c})=f^{\prime}(\mathrm{C})$

But also

$$
\begin{align*}
\mathrm{G}(\mathrm{c}) & =\lim _{n \rightarrow \infty} g_{n}(\mathrm{c}) \\
& =\lim _{n \rightarrow \infty} f^{\prime}(\mathrm{c}) \\
& =\mathrm{g}(\mathrm{c}) \quad[\text { by equation }(3)] \quad\left[\because f^{\prime}{ }_{\mathrm{n}} \rightarrow \mathrm{~g} \text { uniformly on }(\mathrm{a}, \mathrm{~b})\right. \tag{9}
\end{align*}
$$

(i.e.) $\mathrm{G}(\mathrm{c})=f^{\prime}(\mathrm{c})$

From equation (8) \& (9) we get, $f^{\prime}(\mathrm{c})=\mathrm{g}(\mathrm{c})$
$\therefore \mathrm{c}$ is arbitrary, we get
$f^{\prime}(\mathrm{x})=\mathrm{g}(\mathrm{x})$

Theorem 5.21:

Assume that each f_{n} is a real-valued function defined on (a, b) such that the derivative $f_{n}{ }^{\prime}(\mathrm{x})$ exists for each x in (a, b). Assume that, for at least one point x_{0} in (a, b), the series $\sum f_{n}\left(\mathrm{x}_{0}\right)$ converges. Assume further that there exists a function g such that $\sum f_{n}{ }^{\prime}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ (uniformly on ($\mathrm{a}, \mathrm{b})$). Then
a) There exists a function f such that $\sum f_{n}(\mathrm{x})=f(\mathrm{x})$ (uniformly on (a, b)
b) If $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$, the derivative $f^{\prime}(\mathrm{x})$ exists and equals $\sum f_{n}{ }^{\prime}(\mathrm{x})$

Proof:

Define $s_{n}{ }^{\prime}(\mathrm{x})=\sum_{k=1}^{n} f_{k}{ }^{\prime}(x) \forall \mathrm{x} \in(\mathrm{a}, \mathrm{b}) \& \mathrm{~S}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)=\sum_{k=1}^{n} f_{k}{ }^{\prime}\left(x_{0}\right)$

Given $\sum f_{n}{ }^{\prime}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ (uniformly on (a, b))
$\Rightarrow\left\{S_{\mathrm{n}}{ }^{\prime}\right\} \rightarrow \mathrm{g}(\mathrm{x})$ (uniformly on (a, b))
Given $f_{n}\left(x_{0}\right)$ converges
$\Rightarrow\left\{S_{n}{ }^{\prime}\left(\mathrm{x}_{0}\right)\right\}$ converges
By Theorem 9:13 (a) \& by (1) \& (2)
There exist f such that: $\left\{\mathrm{S}_{\mathrm{n}}\right\} \rightarrow \mathrm{f}$ uniformly on (a, b)
$\therefore \sum \mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{f}(\mathrm{x})$ (uniformly on (a, b))
By Theorem 5.20 (b), \& by equation (1) \& (2)
For each $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$, the derivative $f^{\prime}(\mathrm{x})$ exists
and equal to $\mathrm{g}(\mathrm{x})$
(i.e.), $f^{\prime}(\mathrm{x})=\mathrm{g}(\mathrm{x})=\sum f_{n}{ }^{\prime}(\mathrm{x})$

Sufficient conditions for Uniform Convergence of a Series

Theorem 5.22: [Dirichlet's Test for Uniform Convergence]

Let $\mathrm{F}_{\mathrm{n}}(\mathrm{x})$ denote the $\mathrm{n}^{\text {th }}$ partial sum of the series $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x})$, where each f_{n} is a complex-valued function defined on a set S. Assume that $\left\{\mathrm{F}_{\mathrm{n}}\right\}$ is uniformly bounded on S . Let $\left\{g_{n}\right\}$ be a sequence of real-valued functions such that $\mathrm{Gn}_{+1}(\mathrm{x}) \leq g_{n}(\mathrm{x})$ for each x in S and for every $\mathrm{n}=1,2, \ldots$, and assume that $\mathrm{Gn} \rightarrow 0$ uniformly on S . Then the series $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x}) g_{n}(\mathrm{x})$ converges uniformly on S .

Proof:

Let each f_{n} be a complex-valued function defined on S
Let $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n} \mathrm{f}_{\mathrm{k}}(\mathrm{x})$
Assume that $\left\{\mathrm{F}_{\mathrm{n}}\right\}$ is uniformly bounded on S
There exist $\mathrm{M}>0$ such that
$\left|F_{n}(x)\right| \leq M$ for all $x \in S$ \& for all n

Let $\left\{g_{n}\right\}$ be a sequence of real-valued function such that
$\mathrm{Gn}_{+1}(\mathrm{x}) \leq g_{n}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{S}$ \& for all $\mathrm{n}=1,2, \ldots$

Assume that $g_{n} \rightarrow 0$ uniformly on S
\Rightarrow given $\varepsilon>0$ there exist N such that
$\mathrm{n}>\mathrm{N} \Rightarrow\left|g_{n}(\mathrm{x})-0\right|<\varepsilon / 2 \mathrm{M}$ for all $\mathrm{x} \in \mathrm{S}$
$\Rightarrow\left|g_{n}(\mathrm{x})\right|<\varepsilon / 2 \mathrm{M}$ for all $\mathrm{x} \in \mathrm{S}$
To prove that: $\Sigma \mathrm{f}_{\mathrm{n}}(\mathrm{x}) g_{n}(\mathrm{x})$ converges uniformly on S
Let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n} \mathrm{f}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}}(\mathrm{x})$

$$
\begin{aligned}
& =\sum_{k=1}^{n}\left[\mathrm{~F}_{\mathrm{k}}(\mathrm{x})-\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right] \mathrm{g}_{\mathrm{k}}(\mathrm{x}) \\
& =\sum_{k=1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}}(\mathrm{x})-\sum_{k=1}^{n} \mathrm{~F}_{\mathrm{k}-1}(\mathrm{x}) \mathrm{g}_{\mathrm{k}}(\mathrm{x}) \\
& =\sum_{k=1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}}(\mathrm{x})-\sum_{k=1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}+1}(\mathrm{x})-\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \mathrm{Gn}_{+1}(\mathrm{x})+\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \mathrm{Gn}_{+1}(\mathrm{x})
\end{aligned}
$$

$$
\begin{aligned}
\quad & \sum_{k=1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}}(\mathrm{x})-\sum_{k=1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}+1}(\mathrm{x})+\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \mathrm{Gn}_{+1}(\mathrm{x}) \\
\therefore \mathrm{S}_{\mathrm{n}}(\mathrm{x}) & =\sum_{k=1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x})\left[\mathrm{g}_{\mathrm{k}}(\mathrm{x})-\mathrm{g}_{\mathrm{k}+1}(\mathrm{x})\right]+\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \mathrm{Gn}_{+1}(\mathrm{x})
\end{aligned}
$$

If $n>m$, we can write
$\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{S}_{\mathrm{m}}(\mathrm{x})=\sum_{k=m+1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x})\left[\mathrm{g}_{\mathrm{k}}(\mathrm{x})-\mathrm{g}_{\mathrm{k}+1}(\mathrm{x})\right]+\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \mathrm{Gn}_{+1}(\mathrm{x})-\mathrm{F}_{\mathrm{m}}(\mathrm{x}) \mathrm{g}_{\mathrm{m}+1}(\mathrm{x})$
$\left|\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{S}_{\mathrm{m}}(\mathrm{x})\right|=\left|\sum_{k=m+1}^{n} \mathrm{~F}_{\mathrm{k}}(\mathrm{x})\left[\mathrm{g}_{\mathrm{k}}(\mathrm{x})-\mathrm{g}_{\mathrm{k}+1}(\mathrm{x})\right]+\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \mathrm{Gn}_{+1}(\mathrm{x})-\mathrm{F}_{\mathrm{m}}(\mathrm{x}) \mathrm{g}_{\mathrm{m}+1}(\mathrm{x})\right|$

$$
\begin{aligned}
& \leq \mathrm{M}\left|\sum_{k=m+1}^{n}\left[\mathrm{~g}_{\mathrm{k}}(\mathrm{x})-\mathrm{g}_{\mathrm{k}+1}(\mathrm{x})\right]+\mathrm{Gn}_{+1}(\mathrm{x})-\mathrm{g}_{\mathrm{m}+1}(\mathrm{x})\right| \quad \text { by }(1) \\
& \leq \mathrm{M}\left|\mathrm{~g}_{\mathrm{m}+1}(\mathrm{x})-\mathrm{Gn}_{+1}(\mathrm{x})+\mathrm{Gn}_{+1}(\mathrm{x})+\mathrm{g}_{\mathrm{m}+1}(\mathrm{x})\right| \\
& \leq 2 \mathrm{M}\left|\mathrm{~g}_{\mathrm{m}+1}(\mathrm{x})\right| \\
& <2 \mathrm{M} \cdot \frac{\varepsilon}{2 M} \\
& =\varepsilon
\end{aligned}
$$

(i.e.) $\left|\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{S}_{\mathrm{m}}(\mathrm{x})\right|<\varepsilon$
$\Rightarrow\left\{S_{n}\right\}$ converges uniformly on S
$\therefore \sum \mathrm{f}_{\mathrm{n}}(\mathrm{x}) g_{n}(\mathrm{x})$ converges uniformly on S .

Theorem 5.23: Abel's Test for Uniform Convergence]

Let $\left\{g_{n}\right\}$ be a sequence of real-valued functions Such that $g_{n+1}(\mathrm{x}) \leq g_{n}(\mathrm{x})$ for each x in T and for every $\mathrm{n}=1,2, \ldots$ If $\left\{g_{n}\right\}$ is uniformly bounded on T and if $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x})$ converges uniformly on T , then $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x}) g_{n}(\mathrm{x})$ also converges uniformly on T .

Proof:

Let $\left\{g_{n}\right\}$ be a sequence of real-valued functions such that $g_{n+1}(\mathrm{x}) \leq g_{n}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{T}$ \& for all $\mathrm{n}=1,2, \ldots \ldots$

Given $\left\{g_{n}\right\}$ is uniformly bounded on T
There exist $\mathrm{M}>0$ such that $\left|g_{n}(\mathrm{x})\right| \leq \mathrm{M}$ for all $\mathrm{x} \in \mathrm{T} \& \mathrm{~V} \mathrm{n}$
Let $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n} \mathrm{f}_{\mathrm{k}}(\mathrm{x})$

Given: $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x})$ converges uniformly on T
$\therefore\left\{\mathrm{F}_{\mathrm{n}}(\mathrm{x})\right\}$ converges uniformly on T
given $\varepsilon>0$, choose N such that for
$\mathrm{n}, \mathrm{m}>\mathrm{N} \Rightarrow\left|\mathrm{F}_{\mathrm{n}}(\mathrm{x})-\mathrm{F}_{\mathrm{m}}(\mathrm{x})\right|<\varepsilon / \mathrm{M}$
Let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n} \mathrm{f}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}}(\mathrm{x})$
To prove: $\sum \mathrm{f}_{\mathrm{n}}(\mathrm{x}) g_{n}(\mathrm{x})$ converges uniformly on T
(i.e.) To prove: $\left\{\mathrm{S}_{\mathrm{n}}(\mathrm{x})\right\}$ converges uniformly on T

Now, $\mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n} \mathrm{f}_{\mathrm{k}}(\mathrm{x}) \mathrm{g}_{\mathrm{k}}(\mathrm{x})$
$\Rightarrow \mathrm{S}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n}\left[\mathrm{~F}_{\mathrm{k}}(\mathrm{x})-\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right] \mathrm{g}_{\mathrm{k}}(\mathrm{x})$
$\therefore\left|\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{S}_{\mathrm{m}}(\mathrm{x})\right|=\left|\sum_{k=1}^{n}\left[\mathrm{~F}_{\mathrm{k}}(\mathrm{x})-\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right] \mathrm{g}_{\mathrm{k}}(\mathrm{x})-\sum_{k=1}^{n}\left[\mathrm{~F}_{\mathrm{k}}(\mathrm{x})-\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right] \mathrm{g}_{\mathrm{k}}(\mathrm{x})\right|$
$=\left|\sum_{k=m+1}^{n}\left[\mathrm{~F}_{\mathrm{k}}(\mathrm{x})-\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right] \mathrm{g}_{\mathrm{k}}(\mathrm{x})\right|$
$\leq \mathrm{M}\left|\sum_{k=m+1}^{n}\left[\mathrm{~F}_{\mathrm{k}}(\mathrm{x})-\mathrm{F}_{\mathrm{k}-1}(\mathrm{x})\right]\right| \quad$ (by (1))
$=\mathrm{M} \mid\left(\mathrm{F}_{\mathrm{m}+1}(\mathrm{x})-\mathrm{F}_{\mathrm{m}}(\mathrm{x})+\left(\mathrm{F}_{\mathrm{m}+2}(\mathrm{x})-\mathrm{F}_{\mathrm{m}+1}(\mathrm{x})\right)+\ldots \ldots \ldots+\left(\mathrm{F}_{\mathrm{n}}(\mathrm{x})-\mathrm{F}_{\mathrm{n}-1}(\mathrm{x}) \mid\right.\right.$
$=\mathrm{M}\left|\mathrm{F}_{\mathrm{n}}(\mathrm{x})-\mathrm{F}_{\mathrm{m}}(\mathrm{x})\right| \quad(\therefore$ by equation (2))
<M. ε / M
$=\varepsilon$
(i.e.), $\left|\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{S}_{\mathrm{m}}(\mathrm{x})\right|<\varepsilon$
$\Rightarrow\left\{\mathrm{S}_{\mathrm{n}}\right\}$ converges uniformly on T
$\therefore \sum \mathrm{f}_{\mathrm{n}}(\mathrm{x}) g_{n}(\mathrm{x})$ converges uniformly on T

Example 5.24:

Let $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\sum_{k=1}^{n} \mathrm{e}^{\mathrm{ikx}}$
$\left|\mathrm{F}_{\mathrm{n}}(\mathrm{x})\right|=\left|\sum_{k=1}^{n} \mathrm{e}^{\mathrm{ikx}}\right| \leq 1 /|\sin (\mathrm{x} / 2)|$
(i.e.) $\left|\mathrm{F}_{\mathrm{n}}(\mathrm{x})\right| \leq 1 /|\sin (\mathrm{x} / 2)| \mathrm{V} \mathrm{x} \neq 2 \mathrm{~m} \pi, \mathrm{~m} \Rightarrow$ integer

If $0<\delta<\pi$, we get,
$\left|\mathrm{F}_{\mathrm{n}}(\mathrm{x})\right| \leq 1 / \sin (\delta / 2) \quad$ if $\delta \leq \mathrm{x} \leq 2 \pi-\delta$
$\therefore\left\{\mathrm{F}_{\mathrm{n}}\right\}$ is uniformly bounded on $[\delta, 2 \pi-\delta]$
Let $g_{n}(\mathrm{x})=1 / \mathrm{n}$
$\Rightarrow\left\{g_{n}\right\} \rightarrow 0$ uniformly on $[\delta, 2 \pi-\delta]$ if $0<\delta<\pi$
By Theorem 5.22, we get,
$\sum_{n=1}^{\infty} \mathrm{e}^{\mathrm{inx}} / \mathrm{n}$ converges uniformly on $[\delta, 2 \pi-\delta]$ If $0<\delta<\pi$

Note:

Weierstrass M-Test cannot be used to establish the uniform convergence in the above example, Since $l^{\mathrm{inx}} \mid=1$.

Mean Convergence:

Definition 5.25:

Let $\left\{f_{n}\right\}$ be a sequence of Riemann-integrable functions defined on $[a, b]$. Assume that $f \in R$ on $[a, b]$. The sequence $\left\{f_{n}\right\}$ is said to converge in the mean to f on $[a, b]$, and we write $\lim _{n \rightarrow \infty} f_{n}=$ f on $[\mathrm{a}, \mathrm{b}]$, if $\lim _{n \rightarrow \infty} \int_{a}^{b}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right|^{2} \mathrm{dx}=0$

Note:

Uniform convergence of $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ to f on $[\mathrm{a}, \mathrm{b}] \Rightarrow$ mean convergence
$\left(\because\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|<\varepsilon\right.$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}] \Rightarrow \int_{a}^{b}\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|^{2} \mathrm{dx} \leq \varepsilon^{2}(\mathrm{~b}-\mathrm{a})$
provided that each f_{n} is Riemann-Integrable on [a, b]
Mean Convergence \nRightarrow Point wise convergence at any point of the interval.
For example,
For each integer $\mathrm{n} \geq 0$, subdivide $[0,1]$ into 2^{n} equal sub interval.
Let $T_{2^{n}+k}$ denote that sub interval whose right end point is $\frac{(\mathrm{k}+1)}{2^{n}}$
where $\mathrm{K}=0,1,2, \ldots . .2^{\mathrm{n}}-1$
This yields a collection $\left\{I_{1}, I_{2}, \ldots\right\}$ of sub intervals of $[0,1]$, of which the first few are $I_{1}=[0,1]$
, $\mathrm{I}_{2}=[0,1 / 2] ; \mathrm{I}_{3}=[1 / 2,1] ; \mathrm{I}_{4}=[0,1 / 4] ; \mathrm{I}_{5}=[1 / 4,1 / 2] ;$
$\mathrm{I}_{6}=[1 / 2,3 / 4] \ldots .$.
Define fn on $[0,1]$ as follows:
$\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\left\{\begin{array}{l}1 \text { if } x \in I_{n} \\ 0 \\ \text { if } x \in[0,1]-I_{n}\end{array}\right.$
Since $\int_{0}^{1}\left|f_{n}(x)\right|^{2} d x$ is the length of $\mathrm{I}_{\mathrm{n}} \&$ this approaches ' o ' as $\mathrm{n} \rightarrow \infty$,
$\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges in the mean to ' 0 '
But for each $\mathrm{x} \in[0,1]$ we have
$\lim _{n \rightarrow \infty} \sup \mathrm{f}_{\mathrm{n}}(\mathrm{x})=1 \& \lim _{n \rightarrow \infty} \inf \mathrm{f}_{\mathrm{n}}(\mathrm{x})=0$
$\therefore\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right.$ does not converge for any x in $[0,1]$

Theorem 5.26:

Assume that $\underset{n \rightarrow \infty}{ }$ i.m $f_{n}=$ fon $[a, b]$. If $g \in R$ on $[a, b]$, define $h(x)=\int_{a}^{x} f(t) g(t) d t, h_{n}(x)=\int_{a}^{x} f(t) g(t) d t$ if $x \in[a, b]$. Then $h_{n} \rightarrow h$ uniformly on $[a, b]$.

Proof:

Assume $\lim _{n \rightarrow \infty} \mathrm{im}_{\mathrm{n}}=\mathrm{f}$ on $[\mathrm{a}, \mathrm{b}]$
Let $\mathrm{g} \in \mathrm{R}$ on $[\mathrm{a}, \mathrm{b}]$
Define $\mathrm{h}(\mathrm{x})=\int_{a}^{x} \mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt} \quad \& \quad \mathrm{~h}_{\mathrm{n}}(\mathrm{x})=\int_{a}^{x} \mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t})$ if $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
To prove: $\mathrm{h}_{\mathrm{n}} \rightarrow \mathrm{h}$ uniformly on $[\mathrm{a}, \mathrm{b}]$
Now, By Cauchy-Schwartz inequality for integrals, we get

$$
\begin{equation*}
0 \leq\left(\int_{a}^{x}\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|^{2}|\mathrm{~g}(\mathrm{t})| \mathrm{dt}\right)^{2} \leq\left(\int_{a}^{x}\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|^{2} \mathrm{dt}\right) \cdot\left(\int_{a}^{x}|\mathrm{~g}(\mathrm{t})|^{2} \mathrm{dt}\right) \tag{2}
\end{equation*}
$$

Now, given $\left\{f_{n}\right\}$ converges in the mean to f
\Rightarrow given $\varepsilon>0$ there exist N such that
$\mathrm{N}>\mathrm{N} \Rightarrow \int_{a}^{b}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{t})-\mathrm{f}(\mathrm{t})\right|^{2} \mathrm{dt}<\varepsilon^{2} / \mathrm{A}$
Where $\mathrm{A}=\int_{a}^{x}|\mathrm{~g}(\mathrm{t})|^{2} \mathrm{dt}$
$\left|\mathrm{h}(\mathrm{t})-\mathrm{h}_{\mathrm{n}}(\mathrm{t})\right|=\left|\int_{a}^{x} \mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt}-\int_{a}^{x} \mathrm{f}_{\mathrm{n}}(\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt}\right|$

$$
\begin{aligned}
& =\left|\int_{a}^{x}\left[\mathrm{f}(\mathrm{t})-\mathrm{f}_{\mathrm{n}}(\mathrm{t})\right] \mathrm{g}(\mathrm{t}) \mathrm{dt}\right| \\
& \\
& \leq \int_{a}^{x}\left|\mathrm{f}(\mathrm{t})-\mathrm{f}_{\mathrm{n}}(\mathrm{t})\right| \mid \mathrm{g}(\mathrm{t}) \mathrm{dt} \\
& \\
& \leq\left(\int_{a}^{x}\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|^{2} \mathrm{dt}\right)^{1 / 2} \cdot\left(\int_{a}^{x}|\mathrm{~g}(\mathrm{t})|^{2} \mathrm{dt}\right)^{1 / 2} \quad(\therefore \mathrm{by}(2)) \\
& \\
& \leq\left(\int_{a}^{b}\left|\mathrm{f}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right|^{2} \mathrm{dt}\right)^{1 / 2} \cdot\left(\int_{a}^{b}|\mathrm{~g}(\mathrm{t})|^{2} \mathrm{dt}\right)^{1 / 2} \\
& \\
& \quad<\frac{\varepsilon}{\left(\int_{a}^{b}|\mathrm{~g}(\mathrm{t})| 2 \mathrm{dt}\right)^{1 / 2}} \cdot\left(\int_{a}^{x}|\mathrm{~g}(\mathrm{t})|^{2} \mathrm{dt}\right)^{1 / 2} \\
& \\
& =\varepsilon
\end{aligned}
$$

(i.e.), $\left|h(t)-h_{n}(t)\right|<\varepsilon$
$\therefore \mathrm{h}_{\mathrm{n}} \rightarrow \mathrm{h}$ uniformly on $[\mathrm{a}, \mathrm{b}]$.

Theorem 5.27:

Assume that $\underset{n \rightarrow \infty}{\operatorname{ii.m}} \mathrm{f}_{\mathrm{n}}=\mathrm{f} \& \underset{n \rightarrow \infty}{\operatorname{li.m}} \mathrm{Gn}=\mathrm{g}$ on $[\mathrm{a}, \mathrm{b}]$. Define $\mathrm{h}(\mathrm{x})=\int_{a}^{x} \mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt}$, $\mathrm{h}_{\mathrm{n}}(\mathrm{x})=\int_{a}^{x} \mathrm{f}_{\mathrm{n}}(\mathrm{t}) g_{\mathrm{n}}(\mathrm{t}) \mathrm{d}$, if $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$. Then $\mathrm{h}_{\mathrm{n}} \rightarrow \mathrm{h}$ uniformly on $[\mathrm{a}, \mathrm{b}]$

Proof:

Assume that $\mathrm{f} \in \mathrm{R}$ \& $\mathrm{g} \in \mathrm{R}$ on $[\mathrm{a}, \mathrm{b}]$
Assume thatl. i. $\mathrm{m}_{n \rightarrow \infty} \mathrm{f}_{\mathrm{n}}=\mathrm{f} \& \quad \lim _{n \rightarrow \infty} g_{n}=\mathrm{g}$ on $[\mathrm{a}, \mathrm{b}]$
Given $\varepsilon>0$ there exist N such that
$\mathrm{n}>\mathrm{N} \Rightarrow \int_{a}^{b}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{t})-\mathrm{f}(\mathrm{t})\right|^{2} \mathrm{dt}<\varepsilon^{2} / 2 \& \int_{a}^{b}\left|g_{n}(\mathrm{t})-\mathrm{g}(\mathrm{t})\right|^{2} \mathrm{dt}<\varepsilon^{2 / 4}$
Now, l. i. $\mathrm{in}_{n \rightarrow \infty} \mathrm{f}_{\mathrm{n}}=\mathrm{f} \& \mathrm{~g} \in \mathrm{R}$ on $[\mathrm{ab}]$

Then by Theorem 5.26, if $x \in[a, b]$
$\int_{a}^{x} f(t) g(t) d t \rightarrow \int_{a}^{x} f(t) g(t) d t$ uniformly on $[a, b]$
Similarly $\underset{n \rightarrow \infty}{\operatorname{li.m}} \mathrm{Gn}=\mathrm{g} \& \mathrm{f} \in \mathrm{R}$ on $[\mathrm{a}, \mathrm{b}]$
$\int_{a}^{x} \mathrm{f}(\mathrm{t}) g_{n}(\mathrm{t}) \mathrm{dt} \rightarrow \int_{a}^{x} \mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt}$ uniformly on $[\mathrm{a}, \mathrm{b}]$
By Cauchy-Schwartz inequality, we get,
$0 \leq\left(\int_{a}^{x}\left|\mathrm{f}-\mathrm{f}_{\mathrm{n}}\right| \cdot\left|\mathrm{g}-g_{n}\right| \mathrm{dt}\right)^{2} \leq\left(\int_{a}^{x}\left|\mathrm{f}-\mathrm{f}_{\mathrm{n}}\right|^{2} \mathrm{dt}\right) .\left(\int_{a}^{x}|\mathrm{~g}-\mathrm{Gn}|^{2} \mathrm{dt}\right)$
Now, we can write
$\mathrm{f}_{\mathrm{n}} g_{n}-\mathrm{fg}=\left[\left(\mathrm{f}-\mathrm{f}_{\mathrm{n}}\right)\left(\mathrm{g}-g_{n}\right)\right]+\left[\mathrm{f}_{\mathrm{n}} \mathrm{g}-\mathrm{fg}\right]+\left[\mathrm{f} g_{n}-\mathrm{fg}\right]$
Now, $\left|\mathrm{h}_{\mathrm{n}}(\mathrm{t})-\mathrm{h}(\mathrm{t})\right|=\left|\int_{a}^{x} \mathrm{f}_{\mathrm{n}}(\mathrm{t}) g_{n}(\mathrm{t}) \mathrm{dt}-\int_{a}^{x} \mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t}) \mathrm{dt}\right|$
$=\left|\int_{a}^{x}\left[\mathrm{f}_{\mathrm{n}}(\mathrm{t}) g_{n}(\mathrm{t})-\mathrm{f}(\mathrm{t}) \mathrm{g}(\mathrm{t})\right] \mathrm{dt}\right|$
$\leq\left(\int_{a}^{x}\left|\mathrm{f}-\mathrm{f}_{\mathrm{n}}\right| \cdot\left|\mathrm{g}-g_{n}\right| \mathrm{dt}\right)+\left(\int_{a}^{x} \mathrm{f}_{\mathrm{n}} \mathrm{dtt}-\int_{a}^{x} \mathrm{fg} \mathrm{dt}\right)+\left(\int_{a}^{x} \mid \mathrm{f} g_{n} \mathrm{dt}-\int_{a}^{x} \mathrm{fg} \mathrm{dt}\right) \quad(\therefore$ by 5)
$\left.\leq\left(\int_{a}^{x}\left|\mathrm{f}-\mathrm{f}_{\mathrm{n}}\right|^{2} \mathrm{dt}\right)^{1 / 2}\right) \cdot\left(\int_{a}^{x}\left|\mathrm{~g}-g_{n}\right|^{2} \mathrm{dt}\right)^{1 / 2}+\left(\int_{a}^{x} \mathrm{f}_{\mathrm{n}} \mathrm{gdt}-\int_{a}^{x} \mathrm{fg} \mathrm{dt}\right)+\left(\int_{a}^{x} \mid \mathrm{f} g_{n} \mathrm{dt}-\int_{a}^{x} \mathrm{fg} \mathrm{dt}\right)$
(\therefore by equation (4))
$=\varepsilon / 2+\varepsilon / 2+0+0 \quad(\therefore$ by equation (1), (2) and (3))
$=\varepsilon \quad$ (i.e.), $\left|\mathrm{h}(\mathrm{t})-\mathrm{h}_{\mathrm{n}}(\mathrm{t})\right|<\varepsilon$
$\therefore \mathrm{h}_{\mathrm{n}} \rightarrow \mathrm{h}$ uniformly on $[\mathrm{a}, \mathrm{b}]$

Course Material Prepared by
Mrs. S. KALAISELVI M.SC., M.Phil., B.Ed., (Ph.D.)

Assistant Professor of Mathematics,
Sarah Tucker College (Autonomous), Tirunelveli-627007

Tirunelveli District.

